Laser-pulse-length effects in ultrafast laser desorption.
Anal. Chem. 95, 18776-18782 (2023)
Shortening the laser pulse length opens up new opportunities for laser desorption (LD) of molecules, with benefits for mass spectrometry (MS) sampling and ionization. The capability to ablate any material without the need for an absorbing matrix and the decrease of thermal damage and molecular fragmentation has promoted various applications with very different parameters and postionization techniques. However, the key issues of the optimum laser pulse length and intensity to achieve efficient and gentle desorption of molecules for postionization in MS are not resolved, although these parameters determine the costs and complexity of the required laser system. Here, we address this research gap with a systematic study on the effect of the pulse length on the LD of molecules. Keeping all other optical and ionization parameters constant, we directly compared the pulses in the femtosecond, picosecond, and nanosecond range with respect to LD-induced fragmentation and desorption efficiency. To represent real-world applications, we investigated the LD of over-the-counter medicaments naproxen and ibuprofen directly from tablets as well as the LD of retene and ship emission aerosols from a quartz filter. With our study design, we excluded interfering effects on fragmentation and LD efficiency from, for example, collisional cooling or postionization by performing the experiments in vacuum with resonance-enhanced multiphoton ionization as the postionization technique. Regarding LD-induced fragmentation, we already found benefits for the picosecond pulses. However, the efficiency of LD was found to continuously increase with decreasing pulse length, pointing to the application potential of ultrashort pulses in trace analytics. Because many interfering effects beyond the LD pulse length could be excluded in the experiment, our results may be directly transferable to the LD applied in other techniques.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Mass-spectrometry; Internal Energy; Icp-ms; Femtosecond; Ablation; Vaporization; Ionization; Matrix; Nanosecond; Identification
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0003-2700
e-ISSN
1520-6882
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 95,
Heft: 51,
Seiten: 18776-18782
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
American Chemical Society (ACS)
Verlagsort
1155 16th St, Nw, Washington, Dc 20036 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504500-001
Förderungen
German Federal Ministry for Economic Affairs and Climate Action
Deutsche Forschungsgemeinschaft
Helmholtz Association (International Laboratory)
Light-Matter Interactions at Interfaces"
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
, Deutsche Forschungsgemeinschaft
Copyright
Erfassungsdatum
2023-12-22