Schuppert, C.* ; Rospleszcz, S. ; Hirsch, J.G.* ; Hoinkiss, D.C.* ; Köhn, A.* ; von Krüchten, R.* ; Russe, M.F.* ; Keil, T.* ; Krist, L.* ; Schmidt, B.* ; Michels, K.B.* ; Schipf, S.* ; Brenner, H.* ; Kröncke, T.J.* ; Pischon, T.* ; Niendorf, T.* ; Schulz-Menger, J.* ; Forsting, M.* ; Völzke, H.* ; Hosten, N.* ; Bülow, R.* ; Zaitsev, M.A.* ; Kauczor, H.U.* ; Bamberg, F.* ; Günther, M.* ; Schlett, C.L.*
Automated image quality assessment for selecting among multiple magnetic resonance image acquisitions in the German National Cohort study.
Sci. Rep. 13:22745 (2023)
In magnetic resonance imaging (MRI), the perception of substandard image quality may prompt repetition of the respective image acquisition protocol. Subsequently selecting the preferred high-quality image data from a series of acquisitions can be challenging. An automated workflow may facilitate and improve this selection. We therefore aimed to investigate the applicability of an automated image quality assessment for the prediction of the subjectively preferred image acquisition. Our analysis included data from 11,347 participants with whole-body MRI examinations performed as part of the ongoing prospective multi-center German National Cohort (NAKO) study. Trained radiologic technologists repeated any of the twelve examination protocols due to induced setup errors and/or subjectively unsatisfactory image quality and chose a preferred acquisition from the resultant series. Up to 11 quantitative image quality parameters were automatically derived from all acquisitions. Regularized regression and standard estimates of diagnostic accuracy were calculated. Controlling for setup variations in 2342 series of two or more acquisitions, technologists preferred the repetition over the initial acquisition in 1116 of 1396 series in which the initial setup was retained (79.9%, range across protocols: 73-100%). Image quality parameters then commonly showed statistically significant differences between chosen and discarded acquisitions. In regularized regression across all protocols, 'structured noise maximum' was the strongest predictor for the technologists' choice, followed by 'N/2 ghosting average'. Combinations of the automatically derived parameters provided an area under the ROC curve between 0.51 and 0.74 for the prediction of the technologists' choice. It is concluded that automated image quality assessment can, despite considerable performance differences between protocols and anatomical regions, contribute substantially to identifying the subjective preference in a series of MRI acquisitions and thus provide effective decision support to readers.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Design
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2045-2322
e-ISSN
2045-2322
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 13,
Heft: 1,
Seiten: ,
Artikelnummer: 22745
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504000-010
Förderungen
Helmholtz Association
Federal Ministry of Education and Research (BMBF)
Universittsklinikum Freiburg (8975)
Copyright
Erfassungsdatum
2024-01-09