Two approaches to instability analysis of the viscous Burgers' equation.
Discret. Contin. Dyn. Syst.-Ser. S 17, 1621-1638 (2023)
The 1D Burger's equation with Dirichlet boundary conditions exhibits a first transition from the trivial steady state to a sinusoidal patterned steady state as the parameter lambda which controls the linear term exceeds 1. The main goal of this paper is to present two different approaches regarding the transition of this patterned steady state. We believe that these approaches can be extended to study the dynamics of more interesting models. As a first approach, we consider an external forcing on the equation which supports a sinusoidal solution as a stable steady state which loses its stability at a critical threshold. We use the method of continued fractions to rigorously analyze the associated linear problem. In particular, we find that the system exhibits a mixed type transition with two distinct basins for initial conditions one of which leads to a local steady state and the other leaves a small neighborhood of the origin. As a second approach, we consider the dynamics on the center-unstable manifold of the first two modes of the unforced system. In this approach, the secondary transition produces two branches of steady state solutions. On one of these branches there is another transition which indicates a symmetry breaking phenomena.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Burger's equation; secondary transition; center manifold; continued fraction; Hopf-bifurcation; Dynamics; Waves
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1937-1632
e-ISSN
1937-1179
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 17,
Heft: 4,
Seiten: 1621-1638
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
American Institute of Mathematical Sciences (AIMS)
Verlagsort
Po Box 2604, Springfield, Mo 65801-2604, United States
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Copyright
Erfassungsdatum
2024-01-10