PuSH - Publikationsserver des Helmholtz Zentrums München

Titz, M.* ; Puetz, S.* ; Witthaut, D.*

Identifying drivers and mitigators for congestion and redispatch in the German electric power system with explainable AI.

Appl. Energy 356, 13 (2024)
Verlagsversion DOI
Open Access Hybrid
The transition to a sustainable energy supply challenges the operation of electric power systems in various ways. Transmission grid loads increase as wind and solar power is often installed far away from the consumers. System operators resolve grid congestion via countertrading or redispatch to ensure grid stability. While some drivers of congestion are known, the magnitude of their impact is unclear, and other factors might still be unidentified.In this study, we conduct a data-driven investigation of congestion in the German transmission grid that reveals drivers and mitigators and quantifies their impact ex-post. Specifically, we used Gradient Boosted Trees and SHAP values to develop an explainable machine learning model for the hourly volume of redispatch and countertrade. As expected, wind power generation in northern Germany emerged as the main driver. Cross-border electricity trading, especially with Denmark, also plays an important role. German solar power has very little effect. Furthermore, our results suggest that run-of-river generation in the alpine region has a strong mitigating effect. Our results support the idea that market design changes, e.g., a bidding zone split, could contribute to congestion prevention.
Impact Factor
Scopus SNIP
Altmetric
10.100
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Congestion management; Cross-border flows; Electricity trading; Explainable artificial intelligence grid; congestion; Redispatch; Energy System; Transmission; Generation
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 0306-2619
Zeitschrift Applied Energy
Quellenangaben Band: 356, Heft: , Seiten: 13 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam [u.a.]
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - FZJ (HAI - FZJ)
Helmholtz AI - KIT (HAI - KIT)
Förderungen Helmholtz Association Initiative and Networking Fund through Helmholtz AI
Erfassungsdatum 2024-01-08