Titz, M.* ; Puetz, S.* ; Witthaut, D.*
Identifying drivers and mitigators for congestion and redispatch in the German electric power system with explainable AI.
Appl. Energy 356, 13 (2024)
The transition to a sustainable energy supply challenges the operation of electric power systems in various ways. Transmission grid loads increase as wind and solar power is often installed far away from the consumers. System operators resolve grid congestion via countertrading or redispatch to ensure grid stability. While some drivers of congestion are known, the magnitude of their impact is unclear, and other factors might still be unidentified.In this study, we conduct a data-driven investigation of congestion in the German transmission grid that reveals drivers and mitigators and quantifies their impact ex-post. Specifically, we used Gradient Boosted Trees and SHAP values to develop an explainable machine learning model for the hourly volume of redispatch and countertrade. As expected, wind power generation in northern Germany emerged as the main driver. Cross-border electricity trading, especially with Denmark, also plays an important role. German solar power has very little effect. Furthermore, our results suggest that run-of-river generation in the alpine region has a strong mitigating effect. Our results support the idea that market design changes, e.g., a bidding zone split, could contribute to congestion prevention.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Congestion management; Cross-border flows; Electricity trading; Explainable artificial intelligence grid; congestion; Redispatch; Energy System; Transmission; Generation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0306-2619
e-ISSN
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 356,
Heft: ,
Seiten: 13
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Amsterdam [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz AI - FZJ (HAI - FZJ)
Helmholtz AI - KIT (HAI - KIT)
POF Topic(s)
Forschungsfeld(er)
PSP-Element(e)
Förderungen
Helmholtz Association Initiative and Networking Fund through Helmholtz AI
Copyright
Erfassungsdatum
2024-01-08