Morris, C.* ; Lipman, Y.* ; Maron, H.* ; Rieck, B. ; Kriege, N.M.* ; Grohe, M.* ; Fey, M.* ; Borgwardt, K.*
Weisfeiler and Leman go Machine Learning: The Story so far.
J. Mach. Learn. Res. 24:333 (2023)
In recent years, algorithms and neural architectures based on the Weisfeiler-Leman algorithm, a well-known heuristic for the graph isomorphism problem, have emerged as a powerful tool for machine learning with graphs and relational data. Here, we give a comprehensive overview of the algorithm's use in a machine-learning setting, focusing on the supervised regime. We discuss the theoretical background, show how to use it for supervised graph and node representation learning, discuss recent extensions, and outline the algorithm's connection to (permutation-)equivariant neural architectures. Moreover, we give an overview of current applications and future directions to stimulate further research.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Machine learning for graphs; Graph neural networks; Weisfeiler-Leman algorithm; expressivity; equivariance; Sherali-adams Relaxations; Neural-network; Graph Isomorphism; Darc System; Kernels; Classification; Information; Generation; Logics
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1532-4435
e-ISSN
1533-7928
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 24,
Heft: ,
Seiten: ,
Artikelnummer: 333
Supplement: ,
Reihe
Verlag
MIT Press
Verlagsort
31 Gibbs St, Brookline, Ma 02446 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540003-001
Förderungen
Hightech Agenda Bavaria
Bavarian State Government
RWTH Junior Principal Investigator Fellowship under Germany's Excellence Strategy
Copyright
Erfassungsdatum
2024-01-16