Metz, M.C.* ; Ezhov, I.* ; Peeken, J.C. ; Buchner, J.A.* ; Lipkova, J.* ; Kofler, F. ; Waldmannstetter, D.* ; Delbridge, C.* ; Diehl, C.* ; Bernhardt, D. ; Schmidt-Graf, F.* ; Gempt, J.* ; Combs, S.E. ; Zimmer, C.* ; Menze, B.* ; Wiestler, B.*
Toward image-based personalization of glioblastoma therapy: A clinical and biological validation study of a novel, deep learning-driven tumor growth model.
Neurooncol. Adv. 6:vdad171 (2024)
BACKGROUND: The diffuse growth pattern of glioblastoma is one of the main challenges for accurate treatment. Computational tumor growth modeling has emerged as a promising tool to guide personalized therapy. Here, we performed clinical and biological validation of a novel growth model, aiming to close the gap between the experimental state and clinical implementation. METHODS: One hundred and twenty-four patients from The Cancer Genome Archive (TCGA) and 397 patients from the UCSF Glioma Dataset were assessed for significant correlations between clinical data, genetic pathway activation maps (generated with PARADIGM; TCGA only), and infiltration (Dw) as well as proliferation (ρ) parameters stemming from a Fisher-Kolmogorov growth model. To further evaluate clinical potential, we performed the same growth modeling on preoperative magnetic resonance imaging data from 30 patients of our institution and compared model-derived tumor volume and recurrence coverage with standard radiotherapy plans. RESULTS: The parameter ratio Dw/ρ (P < .05 in TCGA) as well as the simulated tumor volume (P < .05 in TCGA/UCSF) were significantly inversely correlated with overall survival. Interestingly, we found a significant correlation between 11 proliferation pathways and the estimated proliferation parameter. Depending on the cutoff value for tumor cell density, we observed a significant improvement in recurrence coverage without significantly increased radiation volume utilizing model-derived target volumes instead of standard radiation plans. CONCLUSIONS: Identifying a significant correlation between computed growth parameters and clinical and biological data, we highlight the potential of tumor growth modeling for individualized therapy of glioblastoma. This might improve the accuracy of radiation planning in the near future.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Deep Learning ; Glioblastoma ; Personalized Therapy ; Tumor Growth Modeling; Glioma Growth; Invasion Margin; Brain; Predictors; Diagnosis; Survival; Atlas; Mri
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
2023
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2632-2498
e-ISSN
2632-2498
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 6,
Heft: 1,
Seiten: ,
Artikelnummer: vdad171
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Great Clarendon St, Oxford Ox2 6dp, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Radiation Sciences
Enabling and Novel Technologies
PSP-Element(e)
G-501300-001
G-530001-001
Förderungen
Helmut Horten Foundation
DCoMEX
EU Marie Sklodowska-Curie program, Translational Brain Imaging Training Network
German Excellence Initiative, Institute for Advanced Studies
TUM International Graduate School of Science and Engineering
D.F.G.
German Research Foundation
Copyright
Erfassungsdatum
2024-03-05