Hagenberg, J. ; Budde, M.* ; Pandeva, T. ; Kondofersky, I. ; Schaupp, S.K.* ; Theis, F.J. ; Schulze, T.G.* ; Müller, N.S. ; Heilbronner, U.* ; Batra, R. ; Knauer-Arloth, J.
longmixr: A tool for robust clustering of high-dimensional cross-sectional and longitudinal variables of mixed data types.
Bioinformatics 40:btae137 (2024)
SUMMARY: Accurate clustering of mixed data, encompassing binary, categorical, and continuous variables, is vital for effective patient stratification in clinical questionnaire analysis. To address this need, we present longmixr, a comprehensive R package providing a robust framework for clustering mixed longitudinal data using finite mixture modeling techniques. By incorporating consensus clustering, longmixr ensures reliable and stable clustering results. Moreover, the package includes a detailed vignette that facilitates cluster exploration and visualization. AVAILABILITY AND IMPLEMENTATION: The R package is freely available at https://cran.r-project.org/package=longmixr with detailed documentation, including a case vignette, at https://cellmapslab.github.io/longmixr/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Domain Criteria Rdoc; R-package; Class Discovery
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
e-ISSN
1367-4811
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 40,
Heft: 4,
Seiten: ,
Artikelnummer: btae137
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Oxford
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
NARSAD Young Investigator Grant
Deutsche Forschungsgemeinschaft
Dr Lisa Oehler Foundation (Kassel, Germany)
Bundesministerium fur Bildung und Forschung (BMBF, Federal Ministry of Education and Research)
National Institute of Aging of the National Institutes of Health
Alzheimer's association award
European Union
Copyright
Erfassungsdatum
2024-05-07