Pan-cellular organelles and suborganelles-from common functions to cellular diversity?
Genes Dev. 38, 98-114 (2024)
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Rna Inheritance ; Rna–organelle Interaction ; Cell Fate Commitment ; Organellar Proteome ; Specialized Organelles; Rna-binding-protein; Diamond-blackfan Anemia; Nuclear-pore Complex; Messenger-rna; Asymmetric Inheritance; Local Translation; Phase-separation; Sad Kinases; Centrosome; Mitochondria
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0890-9369
e-ISSN
1549-5477
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 38,
Heft: 3-4,
Seiten: 98-114
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Cold Spring Harbor Laboratory Press
Verlagsort
1 Bungtown Rd, Cold Spring Harbor, Ny 11724 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30204 - Cell Programming and Repair
Forschungsfeld(er)
Stem Cell and Neuroscience
PSP-Element(e)
G-500800-001
Förderungen
German Research Foundation
European Research Council
European Molecular Biology Organization Long-Term Fellowship
Copyright
Erfassungsdatum
2024-05-07