Unterauer, E.M.* ; Shetab Boushehri, S. ; Jevdokimenko, K.* ; Masullo, L.A.* ; Ganji, M.* ; Sograte-Idrissi, S.* ; Kowalewski, R.* ; Strauss, S.* ; Reinhardt, S.C.M.* ; Perovic, A.* ; Marr, C. ; Opazo, F.* ; Fornasiero, E.F.* ; Jungmann, R.*
Spatial proteomics in neurons at single-protein resolution.
Cell 187, 1785-1800.e16 (2024)
To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Dna-paint ; Excitatory Synapses ; Inhibitory Synapses ; Multiplexing ; Neuron Atlas ; Neuron Imaging ; Proteomics ; Spatial-omics ; Super-resolution Microscopy ; Synapse ; Synapse Diversity ; Synaptic Proteins; Superresolution Microscopy; Dna-paint; Release; Binding
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0092-8674
e-ISSN
1097-4172
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 187,
Heft: 7,
Seiten: 1785-1800.e16
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Cell Press
Verlagsort
Cambridge, Mass.
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540007-001
Förderungen
ERC
BMBF
Max Planck Foundation
Max Planck Society
QBM graduate school
IMPRS-ML graduate school
European Union
Deutsche Forschungsgemeinschaft (DFG)
Schram Stiftung
Hightech Agenda Bayern
Collaborative Research Center 1286 on Quantitative Synaptologie Gottingen, Germany
F. Hoffmann-La Roche
Helmholtz Association
European Research Council
Copyright
Erfassungsdatum
2024-04-25