möglich sobald bei der ZB eingereicht worden ist.
Segmentation-guided Medical Image Registration: Quality Awareness using Label Noise Correctionn.
In: Bildverarbeitung für die Medizin 2024. Switzerland: 2024. 33-38 (Inf. aktuell)
Medical image registration methods can strongly benefit from anatomical labels, which can be provided by segmentation networks at reduced labeling effort. Yet, label noise may adversely affect registration performance. In this work, we propose a quality-aware segmentation-guided registration method that handles such noisy, i.e., low-quality, labels by self-correcting them using Confident Learning. Utilizing NLST and in-house acquired abdominal MR images, we show that our proposed quality-aware method effectively addresses the drop in registration performance observed in quality-unaware methods. Our findings demonstrate that incorporating an appropriate label-correction strategy during training can reduce labeling efforts, consequently enhancing the practicality of segmentation-guided registration.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Sammelbandbeitrag/Buchkapitel
Sprache
englisch
Veröffentlichungsjahr
2024
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
1431-472X
e-ISSN
1431-472X
Bandtitel
Bildverarbeitung für die Medizin 2024
Zeitschrift
Informatik aktuell
Quellenangaben
Seiten: 33-38
Verlagsort
Switzerland
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Scopus ID
85188270100
Erfassungsdatum
2024-04-25