PuSH - Publikationsserver des Helmholtz Zentrums München

Machine learning integrative approaches to advance computational immunology.

Genome Med. 16:80 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The study of immunology, traditionally reliant on proteomics to evaluate individual immune cells, has been revolutionized by single-cell RNA sequencing. Computational immunologists play a crucial role in analysing these datasets, moving beyond traditional protein marker identification to encompass a more detailed view of cellular phenotypes and their functional roles. Recent technological advancements allow the simultaneous measurements of multiple cellular components-transcriptome, proteome, chromatin, epigenetic modifications and metabolites-within single cells, including in spatial contexts within tissues. This has led to the generation of complex multiscale datasets that can include multimodal measurements from the same cells or a mix of paired and unpaired modalities. Modern machine learning (ML) techniques allow for the integration of multiple "omics" data without the need for extensive independent modelling of each modality. This review focuses on recent advancements in ML integrative approaches applied to immunological studies. We highlight the importance of these methods in creating a unified representation of multiscale data collections, particularly for single-cell and spatial profiling technologies. Finally, we discuss the challenges of these holistic approaches and how they will be instrumental in the development of a common coordinate framework for multiscale studies, thereby accelerating research and enabling discoveries in the computational immunology field.
Impact Factor
Scopus SNIP
Altmetric
10.400
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Cell-receptor Repertoires; Gene-expression; Rna-seq; Drug Response; Cytometry; Cancer; Omics; Deconvolution; Landscape; Proteins
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 1756-994X
e-ISSN 1756-994X
Zeitschrift Genome Medicine
Quellenangaben Band: 16, Heft: 1, Seiten: , Artikelnummer: 80 Supplement: ,
Verlag BioMed Central
Verlagsort Campus, 4 Crinan St, London N1 9xw, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen Deutsche Forschungsgemeinschaft (DFG, German Research foundation)
Scopus ID 85195888011
PubMed ID 38862979
Erfassungsdatum 2024-06-18