Garcia, E.B.G.* ; Lladó, X.* ; Mann, R.M.* ; Osuala, R. ; Martí, R.*
     
 
    
        
Breast composition measurements from Full-Field Digital Mammograms using generative adversarial networks.
    
    
        
    
    
        
        In: (17th International Workshop on Breast Imaging, IWBI 2024, 9-12 June 2024, Chicago, US). 1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa: SPIE, 2024.:131740S (Proc. SPIE ; 13174)
    
    
		
		
		  DOI
 DOI
		
		
		
		
		  
		
		
			 möglich sobald  bei der ZB eingereicht worden ist.
		
     
    
		
		
			
				Breast density has demonstrated to be an important risk factor for the development of breast cancer and, therefore, different fully automated density assessment tools have been introduced to obtain quantitative glandular tissue measures. Density maps (DMs) provide local tissue information, representing the amount of glandular tissue between the image receptor and the x-ray source at every pixel in the image. Usually, DMs are obtained from for processing, i.e. raw, mammograms. This fact could become a tricky problem because this type of images are not preserved in the clinical setting. The aim of this work is to introduce a deep learning based framework to synthesize glandular tissue DMs from for presentation mammograms. First, the breast region is located using a dedicated object detector network. Next, a generative adversarial network is used to obtain synthetic density maps, that are useful to evaluate not only the glandular tissue distribution but also the total glandular tissue volume within the breast. Results show that synthetic DMs obtain a structural similarity index of SSIM = 0.93 ± 0.06 with respect to real images. Similarly, shared information between the real and synthetic images, computed using the histogram intersection, corresponds to HI = 0.84 ± 0.10, while the average pixel difference represents only 3.85 ± 2.78 % of breast thickness. Furthermore, glandular tissue volume (GTV) obtained from synthetic density map show a strong correlation with the value provided by the real one (ρ = 0.89 [C.I 0.87 − 0.91]). In conclusion, generative deep learning models can be useful to evaluate breast composition, from local to global tissue distribution.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Konferenzbeitrag
    
 
    
        Dokumenttyp
        
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Breast Density ; Deep Learning ; Density Maps ; Full-field Digital Mammography ; Image Synthesis; Cancer Risk; Density
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2024
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2024
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        17th International Workshop on Breast Imaging, IWBI 2024
    
 
	
        Konferzenzdatum
        9-12 June 2024
    
     
	
        Konferenzort
        Chicago, US
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 13174,  
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: 131740S 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            SPIE
        
 
        
            Verlagsort
            1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-507100-001
    
 
    
        Förderungen
        AI algorithms in Breast Cancer
Ministry of Science, Innovation, and Universities of Spain
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2024-07-22