Arcas, M.B.* ; Osuala, R. ; Lekadir, K.* ; Diaz, O.*
     
 
    
        
Mitigating annotation shift in cancer classification using single-image generative models.
    
    
        
    
    
        
        In: (17th International Workshop on Breast Imaging, IWBI 2024, 9-12 June 2024, Chicago, US). 1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa: SPIE, 2024.:1317421 (Proc. SPIE ; 13174)
    
    
		
		
		  DOI
 DOI
		
		
		
		
		  
		
		
			 möglich sobald  bei der ZB eingereicht worden ist.
		
     
    
		
		
			
				Artificial I ntelligence (AI) h as e merged a s a v aluable t ool f or a ssisting r adiologists i n b reast c ancer detection and diagnosis. However, the success of AI applications in this domain is restricted by the quantity and quality of available data, posing challenges due to limited and costly data annotation procedures that often lead to annotation shifts. This study simulates, analyses and mitigates annotation shifts in cancer classification in the breast mammography domain. First, a high-accuracy cancer risk prediction model is developed, which effectively d istinguishes b enign f rom m alignant l esions. N ext, m odel p erformance i s u sed t o q uantify t he impact of annotation shift. We uncover a substantial impact of annotation shift on multiclass classification performance particularly for malignant lesions. We thus propose a training data augmentation approach based on single-image generative models for the affected c lass, r equiring a s f ew a s f our i n-domain a nnotations t o c onsiderably mitigate annotation shift, while also addressing dataset imbalance. Lastly, we further increase performance by proposing and validating an ensemble architecture based on multiple models trained under different d ata augmentation regimes. Our study offers k ey i nsights i nto a nnotation s hift i n d eep l earning b reast c ancer c lassification and explores the potential of single-image generative models to overcome domain shift challenges. All code used for this study is made publicly available at https://github.com/MartaBuetas/EnhancingBreastCancerDiagnosis.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Konferenzbeitrag
    
 
    
        Dokumenttyp
        
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Dataset Shift ; Deep Learning ; Gans ; Image Synthesis ; Mammography ; Synthetic Data
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2024
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2024
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        17th International Workshop on Breast Imaging, IWBI 2024
    
 
	
        Konferzenzdatum
        9-12 June 2024
    
     
	
        Konferenzort
        Chicago, US
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 13174,  
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: 1317421 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            SPIE
        
 
        
            Verlagsort
            1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-507100-001
    
 
    
        Förderungen
        Ministry of Science and Innovation of Spain
European Union
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2024-07-16