Osuala, R. ; Joshi, S.* ; Tsirikoglou, A.* ; Garrucho, L.* ; Pinaya, W.H.L.* ; Diaz, O.* ; Lekadir, K.*
     
 
    
        
Pre- to post-contrast breast MRI synthesis for enhanced tumour segmentation.
    
    
        
    
    
        
        In: (Conference on Medical Imaging - Image Processing, 19-22 Februar 2024, San Diego, California). 1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa: SPIE, 2024.:129260Y (Proc. SPIE ; 12926)
    
    
		
		
		  DOI
 DOI
		
		
		
		
		  
		
		
			Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
     
    
		
		
			
				Despite its benefits for tumour detection and treatment, the administration of contrast agents in dynamic contrast-enhanced MRI (DCE-MRI) is associated with a range of issues, including their invasiveness, bioaccumulation, and a risk of nephrogenic systemic fibrosis. This study explores the feasibility of producing synthetic contrast enhancements by translating pre-contrast T1-weighted fat-saturated breast MRI to their corresponding first DCE-MRI sequence leveraging the capabilities of a generative adversarial network (GAN). Additionally, we introduce a Scaled Aggregate Measure (SAMe) designed for quantitatively evaluating the quality of synthetic data in a principled manner and serving as a basis for selecting the optimal generative model. We assess the generated DCE-MRI data using quantitative image quality metrics and apply them to the downstream task of 3D breast tumour segmentation. Our results highlight the potential of post-contrast DCE-MRI synthesis in enhancing the robustness of breast tumour segmentation models via data augmentation. Our code is available at https://github.com/RichardObi/pre_post_synthesis.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Konferenzbeitrag
    
 
    
        Dokumenttyp
        
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Breast Cancer ; Contrast Agent ; Deep Learning ; Gans ; Generative Models ; Synthetic Data; Image; Cancer
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2024
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2024
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        Conference on Medical Imaging - Image Processing
    
 
	
        Konferzenzdatum
        19-22 Februar 2024
    
     
	
        Konferenzort
        San Diego, California
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 12926,  
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: 129260Y 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            SPIE
        
 
        
            Verlagsort
            1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-507100-001
    
 
    
        Förderungen
        Ministry of Science and Innovation of Spain
European Union
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2024-07-23