Kohantorabi, M.* ; Ugolotti, A.* ; Sochor, B.* ; Rössler, J. ; Wagstaffe, M.* ; Meinhardt, A.* ; Beck, E.E.* ; Dolling, D.S.* ; Garcia, M.B.* ; Creutzburg, M.* ; Keller, T.F.* ; Schwartzkopf, M.* ; Vayalil, S.K.* ; Thuenauer, R.* ; Guédez, G.* ; Löw, C.* ; Ebert, G. ; Protzer, U. ; Hammerschmidt, W. ; Zeidler, R. ; Roth, S.V.* ; Di Valentin, C.* ; Stierle, A.* ; Noei, H.*
Light-induced transformation of virus-like particles on TiO2.
ACS Appl. Mater. Interfaces 16, 37275-37287 (2024)
Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Afm ; Gisaxs ; Sars-cov-2 Virus-like Particles (vlps) ; Xps ; Photocatalytic Oxidation ; Titanium Dioxide; Protein Adsorption; Inactivation; Spectroscopy; Acids; Xps
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
1944-8244
e-ISSN
1944-8252
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 16,
Heft: 28,
Seiten: 37275-37287
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
ACS
Verlagsort
Washington, DC
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Immune Response and Infection
Enabling and Novel Technologies
PSP-Element(e)
G-501500-001
G-502700-010
G-502700-003
G-503010-001
G-502799-701
Förderungen
European Union-NextGenerationEU through the Italian Ministry of University and Research
Initiative and networking fund of the Helmholtz Association of German Research Centers under the CORAERO Project
Copyright
Erfassungsdatum
2024-07-12