PuSH - Publikationsserver des Helmholtz Zentrums München

Muzakka, K.F.* ; Möller, S.* ; Kesselheim, S.* ; Ebert, J.* ; Bazarova, A.* ; Hoffmann, H.* ; Starke, S.* ; Finsterbusch, M.*

Analysis of Rutherford backscattering spectra with CNN-GRU mixture density network.

Sci. Rep. 14, 16 (2024)
Verlagsversion DOI
Open Access Gold
Ion Beam Analysis (IBA) utilizing MeV ion beams provides valuable insights into surface elemental composition across the entire periodic table. While ion beam measurements have advanced towards high throughput for mapping applications, data analysis has lagged behind due to the challenges posed by large volumes of data and multiple detectors providing diverse analytical information. Traditional physics-based fitting algorithms for these spectra can be time-consuming and prone to local minima traps, often taking days or weeks to complete. This study presents an approach employing a Mixture Density Network (MDN) to model the posterior distribution of Elemental Depth Profiles (EDP) from input spectra. Our MDN architecture includes an encoder module (EM), leveraging a Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU), and a Mixture Density Head (MDH) employing a Multi-Layer Perceptron (MLP). Validation across three datasets with varying complexities demonstrates that for simple and intermediate cases, the MDN performs comparably to the conventional automatic fitting method (Autofit). However, for more complex datasets, Autofit still outperforms the MDN. Additionally, our integrated approach, combining MDN with the automatic fit method, significantly enhances accuracy while still reducing computational time, offering a promising avenue for improved analysis in IBA.
Impact Factor
Scopus SNIP
Altmetric
3.800
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Convolutional Neural-networks; Ion-beam Analysis; Rbs
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Zeitschrift Scientific Reports
Quellenangaben Band: 14, Heft: 1, Seiten: 16 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - FZJ (HAI - FZJ)
Förderungen Helmholtz AI platform
Helmholtz Association Initiative and Networking Fund through the project "Digital Earth"
Federal Ministry of Education and Research (BMBF)
Bundesministerium fr Bildung und Forschung
Scopus ID 85199367484
Erfassungsdatum 2024-07-30