Muzakka, K.F.* ; Möller, S.* ; Kesselheim, S.* ; Ebert, J.* ; Bazarova, A.* ; Hoffmann, H.* ; Starke, S.* ; Finsterbusch, M.*
Analysis of Rutherford backscattering spectra with CNN-GRU mixture density network.
Sci. Rep. 14, 16 (2024)
Ion Beam Analysis (IBA) utilizing MeV ion beams provides valuable insights into surface elemental composition across the entire periodic table. While ion beam measurements have advanced towards high throughput for mapping applications, data analysis has lagged behind due to the challenges posed by large volumes of data and multiple detectors providing diverse analytical information. Traditional physics-based fitting algorithms for these spectra can be time-consuming and prone to local minima traps, often taking days or weeks to complete. This study presents an approach employing a Mixture Density Network (MDN) to model the posterior distribution of Elemental Depth Profiles (EDP) from input spectra. Our MDN architecture includes an encoder module (EM), leveraging a Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU), and a Mixture Density Head (MDH) employing a Multi-Layer Perceptron (MLP). Validation across three datasets with varying complexities demonstrates that for simple and intermediate cases, the MDN performs comparably to the conventional automatic fitting method (Autofit). However, for more complex datasets, Autofit still outperforms the MDN. Additionally, our integrated approach, combining MDN with the automatic fit method, significantly enhances accuracy while still reducing computational time, offering a promising avenue for improved analysis in IBA.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Convolutional Neural-networks; Ion-beam Analysis; Rbs
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
2045-2322
e-ISSN
2045-2322
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 14,
Heft: 1,
Seiten: 16
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz AI - FZJ (HAI - FZJ)
POF Topic(s)
Forschungsfeld(er)
PSP-Element(e)
Förderungen
Helmholtz AI platform
Helmholtz Association Initiative and Networking Fund through the project "Digital Earth"
Federal Ministry of Education and Research (BMBF)
Bundesministerium fr Bildung und Forschung
Copyright
Erfassungsdatum
2024-07-30