Erdur, A.C.* ; Rusche, D.* ; Scholz, D.* ; Kiechle, J.* ; Fischer, S.* ; Llorián-Salvador, O.* ; Buchner, J.A.* ; Nguyen, M.Q.* ; Etzel, L. ; Weidner, J.* ; Metz, M.C.* ; Wiestler, B.* ; Schnabel, J.A. ; Rueckert, D.* ; Combs, S.E. ; Peeken, J.C.
Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives.
Strahlenther. Onkol., DOI: 10.1007/s00066-024-02262-2 (2024)
The rapid development of artificial intelligence (AI) has gained importance, with many tools already entering our daily lives. The medical field of radiation oncology is also subject to this development, with AI entering all steps of the patient journey. In this review article, we summarize contemporary AI techniques and explore the clinical applications of AI-based automated segmentation models in radiotherapy planning, focusing on delineation of organs at risk (OARs), the gross tumor volume (GTV), and the clinical target volume (CTV). Emphasizing the need for precise and individualized plans, we review various commercial and freeware segmentation tools and also state-of-the-art approaches. Through our own findings and based on the literature, we demonstrate improved efficiency and consistency as well as time savings in different clinical scenarios. Despite challenges in clinical implementation such as domain shifts, the potential benefits for personalized treatment planning are substantial. The integration of mathematical tumor growth models and AI-based tumor detection further enhances the possibilities for refining target volumes. As advancements continue, the prospect of one-stop-shop segmentation and radiotherapy planning represents an exciting frontier in radiotherapy, potentially enabling fast treatment with enhanced precision and individualization.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Automatic Segmentation ; Deep Learning ; Radiation Oncology ; Radiotherapy Planning; Clinical Target Volume; Medical Image Segmentation; Radiation-therapy; Auto-segmentation; Interobserver Variability; Automatic Segmentation; Statistical Shape; Neural-network; Cancer; Delineation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0179-7158
e-ISSN
1439-099X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band:
Heft:
Seiten:
Artikelnummer:
Supplement:
Reihe
Verlag
Urban & Vogel
Verlagsort
Tiergartenstrasse 17, D-69121 Heidelberg, Germany
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Radiation Sciences
Enabling and Novel Technologies
PSP-Element(e)
G-501300-001
G-507100-001
Förderungen
Else-Kroener-Fresenius-Stiftung - Wilhelm Sander-Stiftung
Deutsche Forschungsgemeinschaft (DFG, German Research foundation)
Copyright
Erfassungsdatum
2024-09-17