PuSH - Publikationsserver des Helmholtz Zentrums München

Erdur, A.C.* ; Rusche, D.* ; Scholz, D.* ; Kiechle, J.* ; Fischer, S.* ; Llorián-Salvador, O.* ; Buchner, J.A.* ; Nguyen, M.Q.* ; Etzel, L. ; Weidner, J.* ; Metz, M.C.* ; Wiestler, B.* ; Schnabel, J.A. ; Rueckert, D.* ; Combs, S.E. ; Peeken, J.C.

Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives.

Strahlenther. Onkol., DOI: 10.1007/s00066-024-02262-2 (2024)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
The rapid development of artificial intelligence (AI) has gained importance, with many tools already entering our daily lives. The medical field of radiation oncology is also subject to this development, with AI entering all steps of the patient journey. In this review article, we summarize contemporary AI techniques and explore the clinical applications of AI-based automated segmentation models in radiotherapy planning, focusing on delineation of organs at risk (OARs), the gross tumor volume (GTV), and the clinical target volume (CTV). Emphasizing the need for precise and individualized plans, we review various commercial and freeware segmentation tools and also state-of-the-art approaches. Through our own findings and based on the literature, we demonstrate improved efficiency and consistency as well as time savings in different clinical scenarios. Despite challenges in clinical implementation such as domain shifts, the potential benefits for personalized treatment planning are substantial. The integration of mathematical tumor growth models and AI-based tumor detection further enhances the possibilities for refining target volumes. As advancements continue, the prospect of one-stop-shop segmentation and radiotherapy planning represents an exciting frontier in radiotherapy, potentially enabling fast treatment with enhanced precision and individualization.
Impact Factor
Scopus SNIP
Altmetric
2.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Automatic Segmentation ; Deep Learning ; Radiation Oncology ; Radiotherapy Planning; Clinical Target Volume; Medical Image Segmentation; Radiation-therapy; Auto-segmentation; Interobserver Variability; Automatic Segmentation; Statistical Shape; Neural-network; Cancer; Delineation
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 0179-7158
e-ISSN 1439-099X
Verlag Urban & Vogel
Verlagsort Tiergartenstrasse 17, D-69121 Heidelberg, Germany
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Radiation Medicine (IRM)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Forschungsfeld(er) Radiation Sciences
Enabling and Novel Technologies
PSP-Element(e) G-501300-001
G-507100-001
Förderungen Else-Kroener-Fresenius-Stiftung - Wilhelm Sander-Stiftung
Deutsche Forschungsgemeinschaft (DFG, German Research foundation)
Scopus ID 85201052621
PubMed ID 39105745
Erfassungsdatum 2024-09-17