Yang, L. ; Liu, Q. ; Kumar, P. ; Sengupta, A. ; Farnoud, A. ; Shen, R. ; Trofimova, D.* ; Ziegler, S.* ; Davoudi, N.* ; Doryab, A. ; Yildirim, A.Ö. ; Diefenbacher, M. ; Schiller, H. ; Razansky, D.* ; Piraud, M. ; Burgstaller, G. ; Kreyling, W.G. ; Isensee, F.* ; Rehberg, M. ; Stöger, T. ; Schmid, O.
LungVis 1.0: An automatic AI-powered 3D imaging ecosystem unveils spatial profiling of nanoparticle delivery and acinar migration of lung macrophages.
Nat. Commun. 15:10138 (2024)
Targeted (nano-)drug delivery is essential for treating respiratory diseases, which are often confined to distinct lung regions. However, spatio-temporal profiling of drugs or nanoparticles (NPs) and their interactions with lung macrophages remains unresolved. Here, we present LungVis 1.0, an AI-powered imaging ecosystem that integrates light sheet fluorescence microscopy with deep learning-based image analysis pipelines to map NP deposition and dosage holistically and quantitatively across bronchial and alveolar (acinar) regions in murine lungs for widely-used bulk-liquid and aerosol-based delivery methods. We demonstrate that bulk-liquid delivery results in patchy NP distribution with elevated bronchial doses, whereas aerosols achieve uniform deposition reaching distal alveoli. Furthermore, we reveal that lung tissue-resident macrophages (TRMs) are dynamic, actively patrolling and redistributing NPs within alveoli, contesting the conventional paradigm of TRMs as static entities. LungVis 1.0 provides an advanced framework for exploring pulmonary delivery dynamics and deepening insights into TRM-mediated lung immunity.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
In-vivo; Particle-size; Translocation; Deposition; Visualization; Nanomaterials; Persistence; Clearance; System
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 15,
Heft: 1,
Seiten: ,
Artikelnummer: 10138
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
30205 - Bioengineering and Digital Health
80000 - German Center for Lung Research
Forschungsfeld(er)
Lung Research
Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e)
G-505000-008
G-505000-001
G-501600-001
G-530001-001
G-505000-007
G-501694-001
G-501693-001
G-501600-014
G-504000-010
G-501800-810
Förderungen
Helmholtz Incubator on Information and Data Science
Helmholtz Imaging
Helmholtz AI through a HGF research grant
EU
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
Copyright
Erfassungsdatum
2024-12-05