Cai, N. ; Verhulst, B.* ; Andreassen, O.A.* ; Buitelaar, J.K.* ; Edenberg, H.J.* ; Hettema, J.M.* ; Gandal, M.* ; Grotzinger, A.* ; Jonas, K.* ; Lee, P.* ; Mallard, T.T.* ; Mattheisen, M.* ; Neale, M.C.* ; Nurnberger, J.I.* ; Peyrout, W.* ; Tucker-Drob, E.M.* ; Smoller, J.W.* ; Kendler, K.S.*
Assessment and ascertainment in psychiatric molecular genetics: challenges and opportunities for cross-disorder research.
Mol. Psychiatry, DOI: 10.1038/s41380-024-02878-x (2024)
Psychiatric disorders are highly comorbid, heritable, and genetically correlated [1-4]. The primary objective of cross-disorder psychiatric genetics research is to identify and characterize both the shared genetic factors that contribute to convergent disease etiologies and the unique genetic factors that distinguish between disorders [4, 5]. This information can illuminate the biological mechanisms underlying comorbid presentations of psychopathology, improve nosology and prediction of illness risk and trajectories, and aid the development of more effective and targeted interventions. In this review we discuss how estimates of comorbidity and identification of shared genetic loci between disorders can be influenced by how disorders are measured (phenotypic assessment) and the inclusion or exclusion criteria in individual genetic studies (sample ascertainment). Specifically, the depth of measurement, source of diagnosis, and time frame of disease trajectory have major implications for the clinical validity of the assessed phenotypes. Further, biases introduced in the ascertainment of both cases and controls can inflate or reduce estimates of genetic correlations. The impact of these design choices may have important implications for large meta-analyses of cohorts from diverse populations that use different forms of assessment and inclusion criteria, and subsequent cross-disorder analyses thereof. We review how assessment and ascertainment affect genetic findings in both univariate and multivariate analyses and conclude with recommendations for addressing them in future research.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Genome-wide Association; Uk Biobank; Major Depression; Selection Bias; Risk-factors; Schizophrenia; Diagnoses; Validity; Prevalence; Interview
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
1359-4184
e-ISSN
1476-5578
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band:
Heft:
Seiten:
Artikelnummer:
Supplement:
Reihe
Verlag
Nature Publishing Group
Verlagsort
Campus, 4 Crinan St, London, N1 9xw, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz Pioneer Campus (HPC)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Pioneer Campus
PSP-Element(e)
G-510007-001
Förderungen
Horizon2020
Research Council of Norway
Sunovion
Brain and Behavior Research Foundation
NIH
KG Jebsen Stiftelsen
SFARI
Autistica
European Federation of Pharmaceutical Industries and Associations (EFPIA)
European Union's FP7
Innovative Medicines Initiative Joint Undertaking
EU-AIMS (European Autism Interventions)
European Union's Horizon 2020 RIA
U.S. Department of Health & Human Services | National Institutes of Health (NIH)
Copyright
Erfassungsdatum
2025-01-10