PuSH - Publikationsserver des Helmholtz Zentrums München

Pargmann, M.* ; Ebert, J.* ; Goetz, M.* ; Quinto, D.M.* ; Pitz-Paal, R.* ; Kesselheim, S.*

Automatic heliostat learning for in situ concentrating solar power plant metrology with differentiable ray tracing.

Nat. Commun. 15:12 (2024)
Verlagsversion DOI
Concentrating solar power plants are a clean energy source capable of competitive electricity generation even during night time, as well as the production of carbon-neutral fuels, offering a complementary role alongside photovoltaic plants. In these power plants, thousands of mirrors (heliostats) redirect sunlight onto a receiver, potentially generating temperatures exceeding 1000 degrees C. Practically, such efficient temperatures are never attained. Several unknown, yet operationally crucial parameters, e.g., misalignment in sun-tracking and surface deformations can cause dangerous temperature spikes, necessitating high safety margins. For competitive levelized cost of energy and large-scale deployment, in-situ error measurements are an essential, yet unattained factor. To tackle this, we introduce a differentiable ray tracing machine learning approach that can derive the irradiance distribution of heliostats in a data-driven manner from a small number of calibration images already collected in most solar towers. By applying gradient-based optimization and a learning non-uniform rational B-spline heliostat model, our approach is able to determine sub-millimeter imperfections in a real-world setting and predict heliostat-specific irradiance profiles, exceeding the precision of the state-of-the-art and establishing full automatization. The new optimization pipeline enables concurrent training of physical and data-driven models, representing a pioneering effort in unifying both paradigms for concentrating solar power plants and can be a blueprint for other domains. Solar tower power plants' efficiency is hindered due to component defects such as heliostat misalignment and surface deformations. Authors propose machine learning with differentiable ray tracing to identify these errors from calibration images and predict irradiance profiles, enhancing operational efficiency.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Altmetric
14.700
0.000
2
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Sun-tracking Formula; Tower Plants; Optimization; Calibration; Simulation; Model
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 15, Heft: 1, Seiten: , Artikelnummer: 12 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - DLR (HAI - DLR)
Helmholtz AI - FZJ (HAI - FZJ)
Förderungen Helmholtz Association Initiative and Networking Fund through the Helmholtz AI platform
Erfassungsdatum 2025-01-08