PuSH - Publikationsserver des Helmholtz Zentrums München

Efremova, M.V. ; Wiedwald, U.* ; Sigmund, F. ; Bodea, S.V. ; Ohldag, H.* ; Feggeler, T.* ; Meckenstock, R.U.* ; Panzl, L.N. ; Francke, J.* ; Beer, I.* ; Ivleva, N.P.* ; Alieva, I.B.* ; Garanina, A.S.* ; Semkina, A.S.* ; Curdt, F.* ; Josten, N.* ; Wintz, S.* ; Farle, M.* ; Lavrijsen, R.* ; Abakumov, M.A.* ; Winklhofer, M.* ; Westmeyer, G.G.

Genetically controlled iron oxide biomineralization in encapsulin nanocompartments for magnetic manipulation of a mammalian cell line.

Adv. Func. Mat. 35:2418013 (2025)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Magnetic nanoparticles have proven invaluable for biomechanical investigations due to their ability to exert localized forces. However, cellular delivery of exogenous magnetic agents often results in endosomal entrapment, thereby limiting their utility for manipulating subcellular structures. This study characterizes and exploits fully genetically controlled biomineralization of iron-oxide cores inside encapsulin nanocompartments to enable magnetic-activated cell sorting (MACS) and magnetic cell manipulation. The fraction of MACS-retained cells showed substantial overexpression of encapsulins and exhibited both para- and ferrimagnetic responses with magnetic moments of 10-15 A m2 per cell, comparable to standard exogenous labels for MACS. Electron microscopy revealed that MACS-retained cells contained densely packed agglomerates of approximate to 30 nm iron oxide cores consisting of ultrafine quasicrystalline ordered nuclei within an amorphous matrix of iron, oxygen, and phosphorus. Scanning transmission X-ray microscopy, X-ray absorption spectroscopy, and Raman microspectroscopy confirmed that the iron-oxide species are consistent with ferric oxide (Fe2O3). In addition, the encapsulin-overexpressing MACS-retained cells can be manipulated by a magnetic needle and regrown in patterns determined by magnetic gradients. This study demonstrates that the formation of quasicrystalline iron oxide with mixed para/ferrimagnetic behavior in the cytosol of mammalian cells enables magnetic manipulation without the delivery of exogenous agents.
Impact Factor
Scopus SNIP
Altmetric
19.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter encapsulins; genetically encoded magnetic nanoparticles; iron oxide biomineralization; magnetic-activated cell sorting; MACS; magnetomechanical cell manipulation; mammalian cells; structural and magnetic characterization; Raman-spectroscopy; Hematite Nanoparticles; Ferritin; Bacterioferritin; Phosphate; Maghemite; Proteins; Cores
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 1616-301X
e-ISSN 1616-3028
Quellenangaben Band: 35, Heft: 13, Seiten: , Artikelnummer: 2418013 Supplement: ,
Verlag Wiley
Verlagsort Weinheim
Begutachtungsstatus Peer reviewed
Institut(e) Insitute of Synthetic Biomedicine (ISBM)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-509300-001
Förderungen U.S. DOE Office of Science User Facility
Scopus ID 105001086312
Scopus ID 85215287610
Erfassungsdatum 2025-03-24