Efremova, M.V. ; Wiedwald, U.* ; Sigmund, F. ; Bodea, S.V. ; Ohldag, H.* ; Feggeler, T.* ; Meckenstock, R.U.* ; Panzl, L.N. ; Francke, J.* ; Beer, I.* ; Ivleva, N.P.* ; Alieva, I.B.* ; Garanina, A.S.* ; Semkina, A.S.* ; Curdt, F.* ; Josten, N.* ; Wintz, S.* ; Farle, M.* ; Lavrijsen, R.* ; Abakumov, M.A.* ; Winklhofer, M.* ; Westmeyer, G.G.
Genetically controlled iron oxide biomineralization in encapsulin nanocompartments for magnetic manipulation of a mammalian cell line.
Adv. Func. Mat. 35:2418013 (2025)
Magnetic nanoparticles have proven invaluable for biomechanical investigations due to their ability to exert localized forces. However, cellular delivery of exogenous magnetic agents often results in endosomal entrapment, thereby limiting their utility for manipulating subcellular structures. This study characterizes and exploits fully genetically controlled biomineralization of iron-oxide cores inside encapsulin nanocompartments to enable magnetic-activated cell sorting (MACS) and magnetic cell manipulation. The fraction of MACS-retained cells showed substantial overexpression of encapsulins and exhibited both para- and ferrimagnetic responses with magnetic moments of 10-15 A m2 per cell, comparable to standard exogenous labels for MACS. Electron microscopy revealed that MACS-retained cells contained densely packed agglomerates of approximate to 30 nm iron oxide cores consisting of ultrafine quasicrystalline ordered nuclei within an amorphous matrix of iron, oxygen, and phosphorus. Scanning transmission X-ray microscopy, X-ray absorption spectroscopy, and Raman microspectroscopy confirmed that the iron-oxide species are consistent with ferric oxide (Fe2O3). In addition, the encapsulin-overexpressing MACS-retained cells can be manipulated by a magnetic needle and regrown in patterns determined by magnetic gradients. This study demonstrates that the formation of quasicrystalline iron oxide with mixed para/ferrimagnetic behavior in the cytosol of mammalian cells enables magnetic manipulation without the delivery of exogenous agents.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
encapsulins; genetically encoded magnetic nanoparticles; iron oxide biomineralization; magnetic-activated cell sorting; MACS; magnetomechanical cell manipulation; mammalian cells; structural and magnetic characterization; Raman-spectroscopy; Hematite Nanoparticles; Ferritin; Bacterioferritin; Phosphate; Maghemite; Proteins; Cores
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1616-301X
e-ISSN
1616-3028
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 35,
Heft: 13,
Seiten: ,
Artikelnummer: 2418013
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
Weinheim
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Insitute of Synthetic Biomedicine (ISBM)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-509300-001
Förderungen
U.S. DOE Office of Science User Facility
Copyright
Erfassungsdatum
2025-03-24