Biases in machine-learning models of human single-cell data.
Nat. Cell Biol. 27, 384–392 (2025)
Recent machine-learning (ML)-based advances in single-cell data science have enabled the stratification of human tissue donors at single-cell resolution, promising to provide valuable diagnostic and prognostic insights. However, such insights are susceptible to biases. Here we discuss various biases that emerge along the pipeline of ML-based single-cell analysis, ranging from societal biases affecting whose samples are collected, to clinical and cohort biases that influence the generalizability of single-cell datasets, biases stemming from single-cell sequencing, ML biases specific to (weakly supervised or unsupervised) ML models trained on human single-cell samples and biases during the interpretation of results from ML models. We end by providing methods for single-cell data scientists to assess and mitigate biases, and call for efforts to address the root causes of biases.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Genomics; Racism; Race
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1465-7392
e-ISSN
1476-4679
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 27,
Heft: ,
Seiten: 384–392
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
Heidelberger Platz 3, Berlin, 14197, Germany
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
80000 - German Center for Lung Research
Forschungsfeld(er)
Enabling and Novel Technologies
Lung Research
PSP-Element(e)
G-503800-001
G-530001-001
G-530003-001
G-501800-833
Förderungen
Helmholtz Association under the joint research school 'Munich School for Data Science'
Copyright
Erfassungsdatum
2025-04-14