Ghannoum, R.* ; Taha, N.* ; Gaviria, D.D.* ; Rajha, H.N.* ; Darra, N.E.* ; Albarqouni, S.
     
 
    
        
Unleashing the power of AI in predicting the technological and phenolic maturity of pomegranates cultivated in Lebanon.
    
    
        
    
    
        
        Sci. Rep. 15:19000 (2025)
    
    
    
		
		
			
				The harvesting time of pomegranates is crucial for maximizing their health benefits and market value. However, traditional methods often fail to consider the intricate interactions between environmental conditions and fruit maturity. This study is the first of its kind in Lebanon to address this limitation by applying advanced machine learning techniques to predict key food quality indicators, which can aid in forecasting or determining the optimal harvesting date. The focus is on technological and phenolic maturity. Over three months, 548 pomegranates were meticulously harvested from three distinct geographic regions in Lebanon: Hasbaya, El Jahliye, and Rachiine. By integrating environmental, physical, and geographical data, we developed predictive models, including Linear Regression (LR) and Multi-Layer Perceptron (MLP) Regressor, to estimate key food quality indicators such as Total Soluble Solids (TSS), Titratable Acidity (TA), Maturity Index (MI), phenolic content, and Color Intensity (CI). Our results demonstrated that the MLP regressor achieved high predictive accuracy, with an R-squared value of 0.84 for TA, making it a reliable tool for predicting acidity levels. The model also showed strong performance in predicting phenolic content and color intensity, with R-squared values of 0.70 and 0.65 respectively, and an average classification accuracy of 71% for categorizing polyphenol levels. Principal Component Analysis (PCA) revealed significant geographic variation in phenolic content. In El Jahliye, phenolic levels ranged from low (<185 mg Gallic Acid Equivalent (GAE) per yield of juice) to moderate (185-400 mg GAE/yield of juice). In Rachiine, levels ranged from moderate to high (>400 mg GAE/yield of juice), while Hasbaya displayed all three phenolic content levels. These findings underscore the importance of region-specific harvesting strategies. As the first study in Lebanon to utilize machine learning for predicting food quality indicators in pomegranates, it provides a novel, data-driven approach to linking these indicators with optimal harvest timing. By accurately forecasting maturity-related metrics using simple physical, geographical, and environmental features, this study offers significant implications for refining agricultural practices in Lebanon and other similar agro-ecological regions, enhancing product quality and market value.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Machine Learning ; Phenolic Maturity ; Pomegranate ; Technological Maturity; Punica-granatum L.; Antioxidant Activity; Chemical-constituents; Human Health; Fruit; Quality; Maturation; Capacity; Indexes; Juice
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2025
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2025
    
 
    
    
        ISSN (print) / ISBN
        2045-2322
    
 
    
        e-ISSN
        2045-2322
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 15,  
	    Heft: 1,  
	    Seiten: ,  
	    Artikelnummer: 19000 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Nature Publishing Group
        
 
        
            Verlagsort
            London
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-530005-001
    
 
    
        Förderungen
        Lebanese Agricultural Research Institute
Federal Foreign Office (AA) - German Federal Ministry of Education and Research (BMBF)
German Academic Exchange Service (DAAD)
Universittsklinikum Bonn (8930)
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2025-06-04