PuSH - Publikationsserver des Helmholtz Zentrums München

Santoso, R.* ; Guignon, L.* ; Deissmann, G.* ; Poonoosamy, J.*

Investigating the metastability of amorphous calcium carbonate by droplet microfluidics experiments using machine learning.

Sci. Rep. 15, 11 (2025)
Postprint DOI
Open Access Gold
Amorphous calcium carbonate (ACC) plays an important role in the crystallization pathways of calcite and its polymorphs influencing many natural and anthropogenic processes, such as carbon sequestration. Characterizing the dissolution rate of ACC in presence of additives of contaminants in favor of crystalline phases is challenging as such reactions occur readily in bulk solution. Droplet microfluidics offers a solution by confining ACC within a droplet, enabling a quantification of the transformation rate of ACC into crystalline phases. However, accurate quantification of this transformation requires analyzing more than thousands of droplets identifying the different polymorphs of calcium carbonate during an experiment, which is labor-intensive. Here we develop a visual-based machine learning method, combining cascading U-Net and K-Means clustering, to allow efficient analysis of droplet microfluidics experiment results. Using our method, we accurately inspect 11,288 droplets over 6 hours of experimental time to identify the polymorphs, using a CPU core in a laptop for only 42 minutes. This is achieved with manual labeling of 11 experimental microscopy images before augmentations. From our analyses the transformation rate of ACC into its crystalline phases can be inferred. The transformation rate indicates an increasing stability of the ACC phase in confinement. Our method is generalizable and can be applied to different setups of droplet microfluidics experiments, facilitating efficient experimentation and analysis of complex crystallization processes.
Impact Factor
Scopus SNIP
Altmetric
3.900
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Amorphous Calcium Carbonate ; Droplet Microfluidics ; Machine Learning; Reactive Transport; In-situ; Crystallization; Precipitation; Nucleation; Phosphate; Water
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Zeitschrift Scientific Reports
Quellenangaben Band: 15, Heft: 1, Seiten: 11 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - FZJ (HAI - FZJ)
Förderungen European Research Council (ERC)
JURECA58 at Forschungszentrum Julich
European Research Council through the project GENIES (ERC)
Helmholtz AI project
Scopus ID 105008729872
Erfassungsdatum 2025-06-29