PuSH - Publikationsserver des Helmholtz Zentrums München

Zamboglou, C.* ; Doncker, W.* ; Christoforou, A.T.* ; Arcangeli, S.* ; Berlin, A.* ; Blanchard, P.* ; Bauman, G.* ; Campi, R.* ; Castro, E.* ; Choudhury, A.* ; Pra, A.D.* ; Draulans, C.* ; Desai, N.* ; Ferentinos, K.* ; Francolini, G.* ; Gillessen, S.* ; Grosu, A.L.* ; Rivas, J.G.* ; Hoelscher, T.* ; Hruby, G.* ; Jereczek-Fossa, B.A.* ; Kamran, S.* ; Kasivisvanathan, V.* ; Kishan, A.U.* ; Kounnis, V.* ; Loblaw, A.* ; Martin, J.* ; Mastroleo, F.* ; Merseburger, A.S.* ; Miszczyk, M.* ; Mohamad, O.* ; Ost, P.* ; Papatsoris, A.* ; Peeken, J.C. ; Sanguedolce, F.* ; Sargos, P.* ; Schmidt-Hegemann, N.* ; Seibert, T.M.* ; Shelan, M.* ; Siva, S.* ; Soeterik, T.F.W.* ; Spratt, D.E.* ; Stenzl, A.* ; Strouthos, I.* ; Sutera, P.* ; Supiot, S.* ; Tilki, D.* ; Tran, P.T.* ; Tree, A.C.* ; Tward, J.* ; Ürün, Y.* ; Vapiwala, N.* ; Waddle, M.R.* ; Wegener, E.* ; Zilli, T.* ; Murthy, V.* ; Thieme, A.H.* ; Spohn, S.*

oDigital pathology biomarkers for guiding radiotherapy-based treatment concepts in prostate cancer - a systematic review and expert consensus.

Radiother. Oncol. 210:111039 (2025)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Current risk-stratification systems for prostate cancer (PCa) do not sufficiently reflect the disease heterogeneity, and digital pathology (DP) combined with artificial intelligence (AI) tools (DP-AI) may offer a solution to this challenge. The aim of this work is to summarize the role of DP-AI for PCa patients treated with radiotherapy (RT), and to point out future areas of research. We conducted (1) a systematic review on the evidence of DP-AI for patients treated with RT and (2) a survey of experts using a modified Delphi method, addressing the current role of DP-AI in clinical and research practice to identify relevant fields of future development. Eleven studies investigated DP-AI in PCa RT, with most using the multimodal AI (MMAI) classifier and four ongoing studies are currently prospectively testing the DP-AI performance. DP-AI showed strong prognostic and predictive performance for endpoints like distant metastasis free survival and overall survival, outperforming traditional risk models and assisting treatment decisions such as androgen deprivation therapy (ADT) duration. Fifty-one and 35 experts responded to round 1 and round 2 of the survey respectively. Questions with ≥75 % agreement were considered relevant and included in the qualitative analysis. Survey results confirmed growing adoption of DP scanners, although regional differences in re-imbursement mechanisms and availability persist, with experts endorsing DP-AI's potential across localized, postoperative, and metastatic settings, though further prospective validation is needed. DP-AI tools show strong prognostic and predictive potential in various PCa by guiding patient stratification and optimising ADT duration in primary RT. Prospective studies and validation in cohorts using modern diagnostic and treatment methods are needed before broad clinical adoption.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Androgen Deprivation Therapy ; Artificial Intelligence ; Biomarkers ; Digital Pathology ; Personalized Medicine ; Prostate Cancer ; Radiotherapy ; Risk Stratification ; Treatment Selection; Artificial-intelligence; Trial; Validation; Therapy
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0167-8140
e-ISSN 1879-0887
Quellenangaben Band: 210, Heft: , Seiten: , Artikelnummer: 111039 Supplement: ,
Verlag Elsevier
Verlagsort Elsevier House, Brookvale Plaza, East Park Shannon, Co, Clare, 00000, Ireland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501300-001
Förderungen Cypriot research and Innovation Foundation as part of the EU framework of the Cohesion Policy Programme "THALIA 2021-2027"
Scopus ID 105010263448
PubMed ID 40645505
Erfassungsdatum 2025-07-21