Saarimäki, L.A.* ; Fratello, M.* ; Del Giudice, G.* ; Di Lieto, E.* ; Afantitis, A.* ; Alenius, H.* ; Chiavazzo, E.* ; Gulumian, M.* ; Karisola, P.* ; Lynch, I.* ; Mancardi, G.L.* ; Melagraki, G.* ; Netti, P.* ; Papadiamantis, A.G.* ; Peijnenburg, W.* ; A Santos, H.* ; Serchi, T.* ; Shahbazi, M.A.* ; Stöger, T. ; Valsami-Jones, E.* ; Vivo, P.* ; Vinković Vrček, I.* ; Vogel, U.* ; Wick, P.* ; Winkler, D.A.* ; Serra, A.* ; Greco, D.*
Wisdom of crowds for supporting the safety evaluation of nanomaterials.
Environ. Sci. Technol. 59, 14969-14980 (2025)
The development of new approach methodologies (NAMs) to replace current in vivo testing for the safety assessment of engineered nanomaterials (ENMs) is hindered by the scarcity of validated experimental data for many ENMs. We introduce a framework to address this challenge by harnessing the collective expertise of professionals from multiple complementary and related fields ("wisdom of crowds" or WoC). By integrating expert insights, we aim to fill data gaps and generate consensus concern scores for diverse ENMs, thereby enhancing the predictive power of nanosafety computational models. Our investigation reveals an alignment between expert opinion and experimental data, providing robust estimations of concern levels. Building upon these findings, we employ predictive machine learning models trained on the newly defined concern scores, ENM descriptors, and gene expression profiles, to quantify potential harm across various toxicity end points. These models further reveal key genes potentially involved in underlying toxicity mechanisms. Notably, genes associated with metal ion homeostasis, inflammation, and oxidative stress emerge as predictors of ENM toxicity across diverse end points. This study showcases the value of integrating expert knowledge and computational modeling to support more efficient, mechanism-informed, and scalable safety assessment of nanomaterials in the rapidly evolving landscape of nanotechnology.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Computational Toxicology ; Engineered Nanomaterials ; Nanosafety ; New Approach Methodologies ; Wisdom Of Crowds; Variational Inference; Nanoparticles; Metallothionein; Toxicity; Opinions
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0013-936X
e-ISSN
1520-5851
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 59,
Heft: 29,
Seiten: 14969-14980
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
ACS
Verlagsort
Washington, DC
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Lung Research
PSP-Element(e)
G-505000-001
Förderungen
Research Council of Finland Flagship Programme, Photonics Research and Innovation (PREIN)
European Commission Horizon 2020 programme via NanoSolveIT project
Horizon Europe programme via projects INSIGHT
ERC Consolidator grant for the project Archimedes
Horizon Europe or national projects
CHIASMA
State Secretariat for Education, Research and Innovation (SERI)
Danish Government
Research Council of Finland
Horizon 2020 Framework Programme
Copyright
Erfassungsdatum
2025-07-18