möglich sobald bei der ZB eingereicht worden ist.
Which modern AI methods provide accurate predictions of toxicological end points? Analysis of Tox24 challenge results.
Chem. Res. Toxicol. 38, 1443-1451 (2025)
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
2
2
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Editorial
Schlagwörter
Chemicals
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0893-228X
e-ISSN
1520-5010
Zeitschrift
Chemical Research in Toxicology
Quellenangaben
Band: 38,
Heft: 9,
Seiten: 1443-1451
Verlag
American Chemical Society (ACS)
Verlagsort
1155 16th St, Nw, Washington, Dc 20036 Usa
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Structural Biology (STB)
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503000-001
Förderungen
U.S. Environmental Protection Agency
Research Participation Program at the Office of Research and Development Center for Computational Toxicology
Nathaniel Charest
odowska-Curie Actions Doctoral Network
Horizon Europe Marie Sklstrok
Marie Sklodowska-Curie Innovative Training Network European Industrial Doctorate
H2020 Marie Sklodowska-Curie Actions
Research Participation Program at the Office of Research and Development Center for Computational Toxicology
Nathaniel Charest
odowska-Curie Actions Doctoral Network
Horizon Europe Marie Sklstrok
Marie Sklodowska-Curie Innovative Training Network European Industrial Doctorate
H2020 Marie Sklodowska-Curie Actions
WOS ID
001547523200001
Scopus ID
105016024770
PubMed ID
40779334
Erfassungsdatum
2025-10-08