PuSH - Publikationsserver des Helmholtz Zentrums München

Diosdi, A.* ; Toth, T.* ; Harmati, M.* ; Istvan, G.* ; Schrettner, B.* ; Hapek, N.* ; Kovács, F.* ; Kriston, A.* ; Buzas, K.* ; Pampaloni, F.* ; Piccinini, F.* ; Horvath, P.

HCS-3DX, a next-generation AI-driven automated 3D-oid high-content screening system.

Nat. Commun. 16, 16:8897 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Self-organised three-dimensional (3D) cell cultures, collectively called 3D-oids, include spheroids, organoids and other co-culture models. Systematic evaluation of these models forms a critical new generation of high-content screening (HCS) systems for patient-specific drug analysis and cancer research. However, the standardisation of working with 3D-oids remains challenging and lacks convincing implementation. This study develops and tests HCS-3DX, a next-generation system for HCS analysis in 3D imaging and image evaluation. HCS-3DX is based on three main components: an automated Artificial Intelligence (AI)-driven micromanipulator for 3D-oid selection, an HCS foil multiwell plate for optimised imaging, and image-based AI software for single-cell data analysis. We validated HCS-3DX directly on 3D tumour models, including tumour-stroma co-cultures. Our data demonstrate that HCS-3DX achieves a resolution that overcomes the limitations of current systems and reliably and effectively performs 3D HCS at the single-cell level. Its application will enhance the accuracy and efficiency of drug screening processes, support personalised medicine approaches, and facilitate more detailed investigations into cellular behaviour within 3D structures.
Impact Factor
Scopus SNIP
Altmetric
15.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Models; Tools
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 16, Heft: 1, Seiten: 16, Artikelnummer: 8897 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540009-001
Förderungen Lenduelet BIOMAG
HUNRENTECH
Horizon-BIALYMPH
Horizon-SYMMETRY
Horizon-SWEEPICS
H2020-Fair-CHARM
HAS-NAP3
TKCS
PerMel-AI
HUNTER-Excellence 2024
OTKA-SNN
NKKP
FIMM High Content Imaging and Analysis Unit
Finnish Cancer Society
MAECI Science and Technology Cooperation Italy-South Korea by the Italian Ministry of Foreign Affairs and International Cooperation
Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences
Scopus ID 105017934731
PubMed ID 41057315
Erfassungsdatum 2025-10-14