Open Access Gold möglich sobald Verlagsversion bei der ZB eingereicht worden ist.
Transient juvenile hypoglycemia in GH insensitive Laron syndrome pigs is associated with insulin hypersensitivity.
Mol. Metab., DOI: 10.1016/j.molmet.2025.102273:102273 (2025)
BACKGROUND AND AIMS: Fasting hypoglycemia has clinical implications for children with growth hormone (GH)-insensitivity syndrome. This study investigates the pathophysiology of juvenile hypoglycemia in a large animal model for GH receptor (GHR) deficiency (the GHR-KO pig) and elucidates mechanisms underlying the transition to normoglycemia in adulthood. METHODS: Insulin sensitivity was assessed in juvenile and adult GHR-KO pigs and wild-type (WT) controls via hyperinsulinemic-euglycemic clamp (HEC) tests. Glucose turnover was measured using D-[6,6-2H2] glucose and 2H2O. Clinical chemical and targeted metabolomics parameters in blood serum were correlated with qPCR and western blot analyses of liver and adipose tissue. RESULTS: GHR-KO pigs showed increased insulin sensitivity (p=0.0019), especially at young age (M-value +34% vs. WT), insignificantly reduced insulin levels, and reduced endogenous glucose production (p=0.0007), leading to fasting hypoglycemia with depleted liver glycogen, elevated β-hydroxybutyrate, but no increase in NEFA levels. Low hormone-sensitive lipase phosphorylation in adipose tissue suggested impaired lipolysis in young GHR-KO pigs. Metabolomics indicated enhanced fatty acid beta-oxidation and use of glucogenic amino acids, likely serving as compensatory pathways to maintain energy homeostasis. In adulthood, insulin sensitivity remained elevated but less pronounced (M-value +20%), while insulin levels were significantly reduced, enabling normoglycemia and improved NEFA availability. Increased fat mass, not sex hormones, appeared key to this metabolic transition, as early castration had no effect. CONCLUSION: Juvenile hypoglycemia in GH insensitivity results from excessive insulin sensitivity, reduced glucose production, and impaired lipolysis. Normoglycemia in adulthood emerges through increased adiposity and moderated insulin sensitivity, independently of sex hormones. These findings elucidate the age-dependent metabolic adaptations in GH insensitivity.
Impact Factor
Scopus SNIP
Altmetric
6.600
0.000
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Beta-oxidation ; Gh Insensitivity ; Glucose Metabolism ; Hypoglycemia ; Insulin Sensitivity ; Large Animal Model ; Metabolomics
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2212-8778
e-ISSN
2212-8778
Zeitschrift
Molecular Metabolism
Quellenangaben
Artikelnummer: 102273
Verlag
Elsevier
Verlagsort
Amsterdam
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Diabetes Research and Metabolic Diseases (IDM)
Institute of Experimental Genetics (IEG)
CF Metabolomics & Proteomics (CF-MPC)
Institute of Diabetes and Cancer (IDC)
Institute of Experimental Genetics (IEG)
CF Metabolomics & Proteomics (CF-MPC)
Institute of Diabetes and Cancer (IDC)
POF Topic(s)
90000 - German Center for Diabetes Research
30201 - Metabolic Health
30505 - New Technologies for Biomedical Discoveries
30201 - Metabolic Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er)
Helmholtz Diabetes Center
Genetics and Epidemiology
Enabling and Novel Technologies
Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e)
G-502400-001
G-500692-001
A-630710-001
G-501900-251
G-500600-001
G-500692-001
A-630710-001
G-501900-251
G-500600-001
PubMed ID
41125144
Erfassungsdatum
2025-10-24