PuSH - Publikationsserver des Helmholtz Zentrums München

Jarchow, H.* ; Bobrowski, C.* ; Falk, S.* ; Hermann, A.* ; Kulaga, A.* ; Põder, J.C.* ; Unfried, M.* ; Usanov, N.* ; Zendeh, B.* ; Kennedy, B.K.* ; Lobentanzer, S. ; Fuellen, G.*

Benchmarking large language models for personalized, biomarker-based health intervention recommendations.

NPJ Digit. Med. 8:631 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The use of large language models (LLMs) in clinical diagnostics and intervention planning is expanding, yet their utility for personalized recommendations for longevity interventions remains opaque. We extended the BioChatter framework to benchmark LLMs' ability to generate personalized longevity intervention recommendations based on biomarker profiles while adhering to key medical validation requirements. Using 25 individual profiles across three different age groups, we generated 1000 diverse test cases covering interventions such as caloric restriction, fasting and supplements. Evaluating 56000 model responses via an LLM-as-a-Judge system with clinician validated ground truths, we found that proprietary models outperformed open-source models especially in comprehensiveness. However, even with Retrieval-Augmented Generation (RAG), all models exhibited limitations in addressing key medical validation requirements, prompt stability, and handling age-related biases. Our findings highlight limited suitability of LLMs for unsupervised longevity intervention recommendations. Our open-source framework offers a foundation for advancing AI benchmarking in various medical contexts.
Impact Factor
Scopus SNIP
Altmetric
15.100
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2398-6352
e-ISSN 2398-6352
Zeitschrift NPJ digital medicine
Quellenangaben Band: 8, Heft: 1, Seiten: , Artikelnummer: 631 Supplement: ,
Verlag Nature Publishing Group
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 105019758288
PubMed ID 41145883
Erfassungsdatum 2025-10-29