Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Stochastic modeling of Pseudomonas syringae growth in the phyllosphere.
Math. Biosci. 239, 106-116 (2012)
Pseudomonas syringae is a gram-negative bacterium which lives on leaf surfaces. Its growth has been described using epifluorescence microscopy and image analysis; it was found to be growing in aggregates of a wide range of sizes. We develop a stochastic model to describe aggregate distribution and determine the mechanisms generating experimental observations. We found that a logistic birth-death model with migration (time-homogeneous Markov process) provides the best description of the observed data. We discuss how to analyze the joint distribution of the numbers of aggregates of different sizes at a given time and explore how to account for new aggregates being created, that is, the joint distribution of the family size statistics conditional on the total number of aggregates. We compute the first two moments. Through simulations we examine how the model's parameters affect the aggregate size distribution and successfully explain the quantitative experimental data available. Aggregation formation is thought to be the first step towards pathogenic behavior of this bacterium; understanding aggregate size distribution would prove useful to understand the switch from epiphytic to pathogenic behavior.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
1.540
1.115
7
7
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Pseudomonas Syringae ; Bacterial Growth ; Stochastic Models Of Bacterial Growth ; Birth-death-migration ; Logistic Growth; Epiphytic Bacterial-Populations; Leaf Surfaces; Aureobasidium-Pullulans; Migration Processes; Apple Leaves; Colonization; Immigration; Dispersal; Dynamics; Size
Sprache
englisch
Veröffentlichungsjahr
2012
HGF-Berichtsjahr
2012
ISSN (print) / ISBN
0025-5564
e-ISSN
1879-3134
Zeitschrift
Mathematical Biosciences
Quellenangaben
Band: 239,
Heft: 1,
Seiten: 106-116
Verlag
Elsevier
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Biomathematics and Biometry (IBB)
PSP-Element(e)
G-503800-002
PubMed ID
22659411
WOS ID
WOS:000306765200003
Scopus ID
84863423122
Erfassungsdatum
2012-08-30