PuSH - Publikationsserver des Helmholtz Zentrums München

Schegerer, A.A. ; Wolf, S.*

Spatially resolved detection of crystallized water ice in a T Tauri object.

Astron. Astrophys. 517:A87 (2010)
Verlagsversion DOI
Free by publisher
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Aims. We search for frozen water and its processing around young stellar objects (YSOs of class I/II). We try to detect potential, regional differences in water ice evolution within YSOs, which is relevant to understanding the chemical structure of the progenitors of protoplanetary systems and the evolution of solid materials. Water plays an important role as a reaction bed for rich chemistry and is an indispensable requirement for life as known on Earth. Methods. We present our analysis of NAOS-CONICA/VLT spectroscopy of water ice at 3 mu m for the T Tauri star YLW16A in the rho Ophiuchi molecular cloud. We obtained spectra for different regions of the circumstellar environment. The observed absorption profiles are deconvolved with the mass extinction profiles of amorphous and crystallized ice measured in laboratory. We take into account both absorption and scattering by ice grains. Results. Water ice in YLW16A is detected with optical depths of between tau = 1.8 and tau = 2.5. The profiles that are measured can be fitted predominantly by the extinction profiles of small grains (0.1 mu m-0.3 mu m) with a small contribution from large grains (<10%). However, an unambiguous trace of grain growth cannot be found. We detected crystallized water ice spectra that have their origin in different regions of the circumstellar environment of the T Tauri star YLW16A. The crystallinity increases in the upper layers of the circumstellar disk, while only amorphous grains exist in the bipolar envelope. As in studies of silicate grains in T Tauri objects, the higher crystallinity in the upper layers of the outer disk regions implies that water ice crystallizes and remains crystallized close to the disk atmosphere where water ice is shielded against hard irradiation.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Infrared: Stars; Accretion; Accretion disks; Astrobiology
ISSN (print) / ISBN 0004-6361
e-ISSN 1432-0746
Quellenangaben Band: 517, Heft: , Seiten: , Artikelnummer: A87 Supplement: ,
Verlag EDP Sciences
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed