Arnold, M. ; Hartsperger, M.L. ; Baurecht, H.* ; Rodriguez, E.* ; Wachinger, B. ; Franke, A.* ; Kabesch, M.* ; Winkelmann, J. ; Pfeufer, A. ; Romanos, M.* ; Illig, T. ; Mewes, H.-W. ; Stuempflen, V. ; Weidinger, S.*
Network-based SNP meta-analysis identifies joint and disjoint genetic features across common human diseases.
BMC Genomics 13:490 (2012)
ABSTRACT: BACKGROUND: Genome-wide association studies (GWAS) have provided a large set of genetic loci influencing the risk for many common diseases. Association studies typically analyze one specific trait in single populations in an isolated fashion without taking into account the potential phenotypic and genetic correlation between traits. However, GWA data can be efficiently used to identify overlapping loci with analogous or contrasting effects on different diseases. RESULTS: Here, we describe a new approach to systematically prioritize and interpret available GWA data. We focus on the analysis of joint and disjoint genetic determinants across diseases. Using network analysis, we show that variant-based approaches are superior to locus-based analyses. In addition, we provide a prioritization of disease loci based on network properties and discuss the roles of hub loci across several diseases. We demonstrate that, in general, agonistic associations appear to reflect current disease classifications, and present the potential use of effect sizes in refining and revising these agonistic signals. We further identify potential branching points in disease etiologies based on antagonistic variants and describe plausible small-scale models of the underlying molecular switches. CONCLUSIONS: The observation that a surprisingly high fraction (>15%) of the SNPs considered in our study are associated both agonistically and antagonistically with related as well as unrelated disorders indicates that the molecular mechanisms influencing causes and progress of human diseases are in part interrelated. Genetic overlaps between two diseases also suggest the importance of the affected entities in the specific pathogenic pathways and should be investigated further.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Genome-wide association study, Genetic overlap, Shared variant network, Disease
comorbidity; GENOME-WIDE ASSOCIATION; IDIOPATHIC PULMONARY-FIBROSIS; INFLAMMATORY-BOWEL-DISEASE; CORONARY-ARTERY-DISEASE; SUSCEPTIBILITY LOCI; CROHNS-DISEASE; HAPLOTYPE MAP; LARGE-SCALE; ATRIAL-FIBRILLATION; CHROMOSOME 4Q25
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2012
Prepublished im Jahr
HGF-Berichtsjahr
2012
ISSN (print) / ISBN
1471-2164
e-ISSN
1471-2164
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 13,
Heft: 1,
Seiten: ,
Artikelnummer: 490
Supplement: ,
Reihe
Verlag
BioMed Central
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30505 - New Technologies for Biomedical Discoveries
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er)
Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e)
G-503700-001
G-500700-001
G-504200-001
Förderungen
Copyright
Erfassungsdatum
2012-10-31