Gu, J. ; Pitz, M. ; Breitner-Busch, S. ; Birmili, W.* ; von Klot, S. ; Schneider, A.E. ; Soentgen, J.* ; Reller, A.* ; Peters, A. ; Cyrys, J.
     
 
    
        
Selection of key ambient particulate variables for epidemiological studies - applying cluster and heatmap analyses as tools for data reduction.
    
    
        
    
    
        
        Sci. Total Environ. 435-436, 541-550 (2012)
    
    
		
		
		  DOI
 DOI
		  PMC
 PMC
		
		
		
		  
		
		
			Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
     
    
		
		
			
				The success of epidemiological studies depends on the use of appropriate exposure variables. The purpose of this study is to extract a relatively small selection of variables characterizing ambient particulate matter from a large measurement data set. The original data set comprised a total of 96 particulate matter variables that have been continuously measured since 2004 at an urban background aerosol monitoring site in the city of Augsburg, Germany. Many of the original variables were derived from measured particle size distribution (PSD) across the particle diameter range 3 nm to 10 μm, including size-segregated particle number concentration, particle length concentration, particle surface concentration and particle mass concentration. The data set was complemented by integral aerosol variables. These variables were measured by independent instruments, including black carbon, sulfate, particle active surface concentration and particle length concentration. It is obvious that such a large number of measured variables cannot be used in health effect analyses simultaneously. The aim of this study is a pre-screening and a selection of the key variables that will be used as input in forthcoming epidemiological studies. In this study, we present two methods of parameter selection and apply them to data from a two-year period from 2007 to 2008. We used the agglomerative hierarchical cluster method to find groups of similar variables. In total, we selected 15 key variables from 9 clusters which are recommended for epidemiological analyses. We also applied a two-dimensional visualization technique called "heatmap" analysis to the Spearman correlation matrix. 12 key variables were selected using this method. Moreover, the positive matrix factorization (PMF) method was applied to the PSD data to characterize the possible particle sources. Correlations between the variables and PMF factors were used to interpret the meaning of the cluster and the heatmap analyses.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Cluster analysis; Heatmap analysis; Particle size distribution; Positive matrix factorization; Data reduction; Epidemiological study; PARTICLE-SIZE-DISTRIBUTION; MYOCARDIAL-INFARCTION SURVIVORS; TIME-SERIES DATA; AIR-POLLUTION; SURFACE-AREA; ULTRAFINE PARTICLES; EUROPEAN CITIES; HEART-DISEASE; EAST-GERMANY; URBAN AIR
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2012
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2012
    
 
    
    
        ISSN (print) / ISBN
        0048-9697
    
 
    
        e-ISSN
        1879-1026
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 435-436,  
	    Heft: ,  
	    Seiten: 541-550 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Elsevier
        
 
        
            Verlagsort
            
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of Epidemiology (EPI)
    
 
    
        POF Topic(s)
        30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Genetics and Epidemiology
    
 
    
        PSP-Element(e)
        G-504000-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2012-11-09