We report on a new method for extraction of quantified optical absorption maps of scattering and absorbing media using sparse representation, a relatively recent and fast emerging technique in the field of signal processing. The tomographic reconstruction is facilitated by assuming slow spatial variations of illuminating optical field along with relatively sharp changes in optical absorption coefficient. As opposed to previous approaches that utilize photon transport equation in order to correct images for inhomogeneous light distribution within the imaged object, the method herein provides an estimate for photon fluence directly from the recorded optoacoustic signals. In this way a robust quantitative performance is achieved without prior knowledge of illumination geometry and optical properties of the object.