PuSH - Publikationsserver des Helmholtz Zentrums München

Videmsek, U.* ; Hagn, A. ; Suhadolc, M.* ; Radl, V. ; Knicker, H.* ; Schloter, M. ; Vodnik, D.*

Abundance and diversity of CO₂-fixing bacteria in grassland soils close to natural carbon dioxide springs.

Microb. Ecol. 58, 1-9 (2009)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 mu mol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO2 regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter microbial community; rubisco genes; co2; fixation; carboxylase/oxygenase; microorganisms; plants; cbbl
ISSN (print) / ISBN 0095-3628
e-ISSN 1432-184X
Zeitschrift Microbial Ecology
Quellenangaben Band: 58, Heft: 1, Seiten: 1-9 Artikelnummer: , Supplement: ,
Verlag Springer
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed