Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
    Seasonal and diurnal variation of PM2.5 apparent particle density in urban air in Augsburg, Germany.
        
        Environ. Sci. Technol. 42, 5087-5093 (2008)
    
    
    
				The apparent particle density of particulate matter with aerodynamic diameter < 2.5 microm (rho2.5) was determined at an urban site in Augsburg, Germany and its correlation with chemical composition and meteorological conditions was investigated. rho2.5 showed strong day-to-day variation from 1.05 to 2.36 g cm(-3) (5 to 95% percentile), and nearly 64% of the daily variability could be explained by a multiple variable regression model. A minimum in the morning and afternoon (about 1.5 g cm(-3)), and a maximum (near 1.8 g cm(-3)) during midday was observed. The minima represent fresh primary aerosol emissions, which were related to traffic soot particles with low density due to their agglomerate structure, especially observed in the early morning hours of weekdays. The maximum is likely due to increased secondary particle production and the presence of more aged particles with the built-up of the convectively mixed boundary layer. rho2.5 has the potential to serve as a crude tracer for chemical composition and atmospheric processing and might play an important role when considering the associations between health effects and ambient particles.
			
			
		Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Times Cited
Scopus
Cited By
					
					Cited By
Altmetric
					
				4.363
					2.510
					40
					69
					
					
				Anmerkungen
				
					
						 
						
					
				
			
				
			
				Besondere Publikation
				
					
						 
					
				
			
			
			
				Auf Hompepage verbergern
				
					
						 
					
				
			
			
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
     
    
     
     
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2008
    
 
     
    
        HGF-Berichtsjahr
        2008
    
 
    
    
        ISSN (print) / ISBN
        0013-936X
    
 
    
        e-ISSN
        1520-5851
    
 
     
     
     
	     
	 
	 
    
        Zeitschrift
        Environmental Science & Technology
    
 
		
    
        Quellenangaben
        
	    Band: 42,  
	    Heft: 14,  
	    Seiten: 5087-5093 
	    
	    
	
    
 
  
         
        
            Verlag
            ACS
        
 
        
            Verlagsort
            Washington, DC
        
 
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of Lung Health and Immunity (LHI)
Institute of Epidemiology (EPI)
Institute of Ecological Chemistry (IOEC)
 
     
     
    Institute of Epidemiology (EPI)
Institute of Ecological Chemistry (IOEC)
        PSP-Element(e)
        G-505000-002
G-503900-005
G-505100-002
 
     
     	
    
    G-503900-005
G-505100-002
        Scopus ID
        48249098826
    
    
        Erfassungsdatum
        2008-10-14