Aust, C.* ; Schweier, J.* ; Brodbeck, F.* ; Sauter, H.H.* ; Becker, G.* ; Schitzler, J.-P.
     
 
    
        
Land availability and potential biomass production with poplar and willow short rotation coppices in Germany.
    
    
        
    
    
        
        Glob. Change Biol. 6, 521-533 (2014)
    
    
		
		
		  DOI
 DOI
		
		
		
		
		  
		
		
			Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
     
    
		
		
			
				Several factors influence land availability for the growth of short rotation coppices (SRC) with fast-growing tree species, including the nationwide availability of agricultural land, economic efficiency, ecological impacts, political boundaries and environmental protection regulations. In this study, we analysed the growing potential of poplar and willow SRC for bioenergy purposes in Germany without negative ecological impacts or land use conflicts. The potential biomass production using SRC on agricultural land in Germany was assessed taking into account ecological, ethical, political and technical restrictions. Using a geographic information system (GIS), digital site maps, climate data and a digital terrain model, the SRC biomass production potential on cropland and grassland was estimated using water supply and mean temperature during the growing season as parameters. From this analysis, a yield model for SRC was developed based on the analysed growth data and site information of 62 short rotation plantations in Germany and France. To assess the technical, ethical and ecological potential of SRC, restrictions in protected areas, technical constraints and competition with food and feed production were investigated. Our results revealed that approximately 18% (2.12 Mio. ha) of cropland and 54% (2.5 Mio. ha) of grassland in Germany were highly suitable for SRC plantations, providing favourable water supplies and mean temperatures during the growing season. These identified sites produced an average yield of more than 14 tons of dry matter per hectare per year. Due to local climate and soil conditions, the federal states in northern and eastern Germany had the highest theoretical SRC potential for agricultural land. After considering all ecological, ethical, political and technical restrictions, as well as future climate predictions, 5.7% (680 000 ha) of cropland and 33% (1.5 Mio. ha) of grassland in Germany were classified as suitable for biomass production with fast-growing tree species in SRC.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Agricultural land; Biomass production; Geographic information system; Germany; Poplar; Short rotation coppice; Willow; Woody biomass potential; Yield model; Greenhouse-gas Emissions; Bioenergy Production; Energy Crops; Electricity Production; Arable Land; Bio-energy; Plantations; Systems; Balance; Growth
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2014
    
 
    
        Prepublished im Jahr 
        2013
    
 
    
        HGF-Berichtsjahr
        2013
    
 
    
    
        ISSN (print) / ISBN
        1354-1013
    
 
    
        e-ISSN
        1365-2486
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 6,  
	    Heft: 5,  
	    Seiten: 521-533 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Wiley
        
 
        
            Verlagsort
            Hoboken
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Environmental Sciences
    
 
    
        PSP-Element(e)
        G-504991-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2013-07-30