PuSH - Publikationsserver des Helmholtz Zentrums München

Do, K.T. ; Kastenmüller, G. ; Mook-Kanamori, D.O.* ; Yousri, N.A.* ; Theis, F.J. ; Suhre, K. ; Krumsiek, J.

Network-based approach for analyzing intra- and interfluid metabolite associations in human blood, urine, and saliva.

J. Proteome Res. 14, 1183-1194 (2015)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Most studies investigating human metabolomics measurements are limited to a single biofluid, most often blood or urine. An organism's biochemical pool, however, comprises complex transboundary relationships, which can only be understood by investigating metabolic interactions and physiological processes spanning multiple parts of the human body. Therefore, we here propose a data-driven network-based approach to generate an integrated picture of metabolomics associations over multiple fluids. We performed an analysis of 2251 metabolites measured in plasma, urine, and saliva, from 374 participants of the Qatar Metabolomics Study on Diabetes (QMDiab). Gaussian graphical models (GGMs) were used to estimate metabolite-metabolite interactions on different subsets of the data set. First, we compared similarities and differences of the metabolome and the association networks between the three fluids. Second, we investigated the cross-talk between the fluids by analyzing correlations occurring between them. Third, we propose a framework for the analysis of medically relevant phenotypes by integrating type 2 diabetes, sex, age, and body mass index into our networks. In conclusion, we present a generic, data-driven network-based approach for structuring and visualizing metabolite correlations within and between multiple body fluids, enabling unbiased interpretation of metabolomics multifluid data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.245
1.177
30
32
Tags
Icb_AtheroMed Icb_metabo Icb_MIMOmics Icb_ML
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Gaussian Graphical Models ; Metabolomics ; Multifluid ; Multiple Body Fluids ; Network Inference ; Partial Correlation ; Type 2 Diabetes; Diabetes-mellitus; Metabolomics; Plasma; Profile; Integration; Challenges; Excretion; Mouse; Rat
Sprache englisch
Veröffentlichungsjahr 2015
Prepublished im Jahr 2014
HGF-Berichtsjahr 2014
ISSN (print) / ISBN 1535-3893
e-ISSN 1535-3907
Quellenangaben Band: 14, Heft: 2, Seiten: 1183-1194 Artikelnummer: , Supplement: ,
Verlag American Chemical Society (ACS)
Verlagsort Washington
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
G-503700-001
PubMed ID 25434815
Scopus ID 84922675982
Erfassungsdatum 2014-12-15