Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Quantifying the effect of sequence variation on regulatory interactions.
Hum. Mutat. 31, 477-483 (2010)
The increasing amount of sequence data provides new opportunities and challenges to derive mechanistic models that can link sequence variations to phenotypic diversity. Here we introduce a new computational framework to suggest possible consequences of sequence variations on regulatory networks. Our method, called sTRAP (strap.molgen.mpg.de), analyses variations in the DNA sequence and predicts quantitative changes to the binding strength of any transcription factor for which there is a binding model. We have tested the method against a set of known associations between SNPs and their regulatory consequences. Our predictions are robust with respect to different parameters and model assumptions. Importantly we set an objective and quantifiable benchmark against which future improvements can be compared. Given the good performance of our method, we developed a publicly available tool that can serve as an important starting point for routine analysis of disease-associated sequence regions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
1.770
1.770
35
50
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Sprache
englisch
Veröffentlichungsjahr
2010
HGF-Berichtsjahr
0
ISSN (print) / ISBN
1059-7794
e-ISSN
1098-1004
Zeitschrift
Human Mutation
Quellenangaben
Band: 31,
Heft: 4,
Seiten: 477-483
Verlag
Wiley
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-553500-001
PubMed ID
20127973
Erfassungsdatum
2010-12-31