PuSH - Publikationsserver des Helmholtz Zentrums München

Inference of spatiotemporal effects on cellular state transitions from time-lapse microscopy.

BMC Syst. Biol. 9:61 (2015)
Verlagsversion Anhang DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Background Time-lapse microscopy allows to monitor cell state transitions in a spatiotemporal context. Combined with single cell tracking and appropriate cell state markers, transition events can be observed within the genealogical relationship of a proliferating population. However, to infer the correlations between the spatiotemporal context and cell state transitions, statistical analysis with an appropriately large number of samples is required. Results Here, we present a method to infer spatiotemporal features predictive of the state transition events observed in time-lapse microscopy data. We first formulate a generative model, simulate different scenarios, such as time-dependent or local cell density-dependent transitions, and illustrate how to estimate univariate transition rates. Second, we formulate the problem in a machine-learning language using regularized linear models. This allows for a multivariate analysis and to disentangle indirect dependencies via feature selection. We find that our method can accurately recover the relevant features and reconstruct the underlying interaction kernels if a critical number of samples is available. Finally, we explicitly use the tree structure of the data to validate if the estimated model is sufficient to explain correlated transition events of sister cells. Conclusions Using synthetic cellular genealogies, we prove that our method is able to correctly identify features predictive of state transitions and we moreover validate the chosen model. Our approach allows to estimate the number of cellular genealogies required for the proposed spatiotemporal statistical analysis, and we thus provide an important tool for the experimental design of challenging single cell time-lapse microscopy assays.  
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.435
0.792
3
3
Tags
Icb_qscd Icb_Stammzellgenealogien
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Cell state transition; Time-lapse microscopy; Single cell analysis; LASSO; Spatial interaction
Sprache englisch
Veröffentlichungsjahr 2015
HGF-Berichtsjahr 2015
e-ISSN 1752-0509
Zeitschrift BMC Systems Biology
Quellenangaben Band: 9, Heft: 1, Seiten: , Artikelnummer: 61 Supplement: ,
Verlag BioMed Central
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
PubMed ID 26391569
Scopus ID 84959129923
Scopus ID 84942065955
Erfassungsdatum 2015-09-21