PuSH - Publikationsserver des Helmholtz Zentrums München

Sapcariu, S.C.* ; Kanashova, T.* ; Dilger, M.* ; Diabaté, S.* ; Oeder, S. ; Passig, J.* ; Radischat, C.* ; Buters, J.T.M. ; Sippula, O.* ; Streibel, T. ; Paur, H.R.* ; Schläger, C.* ; Mülhopt, S.* ; Stengel, B.* ; Rabe, R.* ; Harndorf, H.* ; Krebs, T.* ; Karg, E.W. ; Gröger, T.M. ; Weiss, C.* ; Dittmar, G.* ; Hiller, K.* ; Zimmermann, R.

Metabolic profiling as well as stable isotope assisted metabolic and proteomic analysis of RAW 264.7 macrophages exposed to ship engine aerosol emissions: Different effects of heavy fuel oil and refined diesel fuel.

PLoS ONE 11:e0157964 (2016)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.057
1.044
18
21
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Air-liquid Interface; In-vitro; Alveolar Macrophages; Epithelial-cells; Lung-cells; Exhaust; Combustion; Particles; Responses; Spectrometry
Sprache englisch
Veröffentlichungsjahr 2016
HGF-Berichtsjahr 2016
ISSN (print) / ISBN 1932-6203
Zeitschrift PLoS ONE
Quellenangaben Band: 11, Heft: 6, Seiten: , Artikelnummer: e0157964 Supplement: ,
Verlag Public Library of Science (PLoS)
Verlagsort Lawrence, Kan.
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Environmental Sciences
Allergy
PSP-Element(e) G-504500-001
G-505400-001
PubMed ID 27348622
Scopus ID 84977470746
Erfassungsdatum 2016-06-29