PuSH - Publikationsserver des Helmholtz Zentrums München

Pecanka, J.* ; Jonker, M.A.* ; Bochdanovits, Z.* ; International Parkinson's Disease Genomics Consortium (IPDGC) (Illig, T. ; Lichtner, P.)

A powerful and efficient two-stage method for detecting gene-to-gene interactions in GWAS.

Biostatistics 18, 477-494 (2017)
Verlagsversion Forschungsdaten DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
For over a decade functional gene-to-gene interaction (epistasis) has been suspected to be a determinant in the "missing heritability" of complex traits. However, searching for epistasis on the genome-wide scale has been challenging due to the prohibitively large number of tests which result in a serious loss of statistical power as well as computational challenges. In this article, we propose a two-stage method applicable to existing case-control data sets, which aims to lessen both of these problems by pre-assessing whether a candidate pair of genetic loci is involved in epistasis before it is actually tested for interaction with respect to a complex phenotype. The pre-assessment is based on a two-locus genotype independence test performed in the sample of cases. Only the pairs of loci that exhibit non-equilibrium frequencies are analyzed via a logistic regression score test, thereby reducing the multiple testing burden. Since only the computationally simple independence tests are performed for all pairs of loci while the more demanding score tests are restricted to the most promising pairs, genome-wide association study (GWAS) for epistasis becomes feasible. By design our method provides strong control of the type I error. Its favourable power properties especially under the practically relevant misspecification of the interaction model are illustrated. Ready-to-use software is available. Using the method we analyzed Parkinson's disease in four cohorts and identified possible interactions within several SNP pairs in multiple cohorts.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
1.798
1.342
10
7
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Case-control Design ; Epistasis ; Genetic Interactions ; Parkinson’s Disease ; Two-stage Testing
Sprache englisch
Veröffentlichungsjahr 2017
HGF-Berichtsjahr 2017
ISSN (print) / ISBN 1465-4644
e-ISSN 1465-4644
Zeitschrift Biostatistics
Quellenangaben Band: 18, Heft: 3, Seiten: 477-494 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford [u.a.]
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
CF Genomics (CF-GEN)
Institute of Human Genetics (IHG)
POF Topic(s) 30202 - Environmental Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504091-001
A-632700-001
G-500700-001
Scopus ID 85037746676
PubMed ID 28334077
Erfassungsdatum 2018-02-09