PuSH - Publikationsserver des Helmholtz Zentrums München

Live cell-lineage tracing and machine learning reveal patterns of organ regeneration.

eLife 7:e30823 (2018)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Despite the intrinsically stochastic nature of damage, sensory organs recapitulate normal architecture during repair to maintain function. Here we present a quantitative approach that combines live cell-lineage tracing and multifactorial classification by machine learning to reveal how cell identity and localization are coordinated during organ regeneration. We use the superficial neuromasts in larval zebrafish, which contain three cell classes organized in radial symmetry and a single planar-polarity axis. Visualization of cell-fate transitions at high temporal resolution shows that neuromasts regenerate isotropically to recover geometric order, proportions and polarity with exceptional accuracy. We identify mediolateral position within the growing tissue as the best predictor of cell-fate acquisition. We propose a self-regulatory mechanism that guides the regenerative process to identical outcome with minimal extrinsic information. The integrated approach that we have developed is simple and broadly applicable, and should help define predictive signatures of cellular behavior during the construction of complex tissues.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
7.616
1.572
17
20
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Developmental Biology ; Stem Cells ; Zebrafish; Zebrafish Lateral-line; Progenitor Cells; Gene-expression; Enhancer Trap; Neuromasts; Notch; Migration; Latent; Glia
Sprache englisch
Veröffentlichungsjahr 2018
HGF-Berichtsjahr 2018
ISSN (print) / ISBN 2050-084X
e-ISSN 2050-084X
Zeitschrift eLife
Quellenangaben Band: 7, Heft: , Seiten: , Artikelnummer: e30823 Supplement: ,
Verlag eLife Sciences Publications
Verlagsort Sheraton House, Castle Park, Cambridge, Cb3 0ax, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
30204 - Cell Programming and Repair
Forschungsfeld(er) Enabling and Novel Technologies
Stem Cell and Neuroscience
PSP-Element(e) G-503800-001
G-500100-001
Scopus ID 85045616969
PubMed ID 29595471
Erfassungsdatum 2018-06-20