Nitkunanantharajah, S. ; Haedicke, K.* ; Moore, T.B.* ; Manning, J.B.* ; Dinsdale, G.* ; Berks, M.* ; Taylor, C.* ; Dickinson, M.R.* ; Jüstel, D. ; Ntziachristos, V. ; Herrick, A.L.* ; Murray, A.K.*
Three-dimensional optoacoustic imaging of nailfold capillaries in systemic sclerosis and its potential for disease differentiation using deep learning.
Sci. Rep. 10:16444 (2020)
The autoimmune disease systemic sclerosis (SSc) causes microvascular changes that can be easily observed cutaneously at the finger nailfold. Optoacoustic imaging (OAI), a combination of optical and ultrasound imaging, specifically raster-scanning optoacoustic mesoscopy (RSOM), offers a noninvasive high-resolution 3D visualization of capillaries allowing for a better view of microvascular changes and an extraction of volumetric measures. In this study, nailfold capillaries of patients with SSc and healthy controls are imaged and compared with each other for the first time using OAI. The nailfolds of 23 patients with SSc and 19 controls were imaged using RSOM. The acquired images were qualitatively compared to images from state-of-the-art imaging tools for SSc, dermoscopy and high magnification capillaroscopy. The vascular volume in the nailfold capillaries were computed from the RSOM images. The vascular volumes differ significantly between both cohorts (0.216 +/- 0.085 mm(3) and 0.337 +/- 0.110 mm(3); p < 0.0005). In addition, an artificial neural network was trained to automatically differentiate nailfold images from both cohorts to further assess whether OAI is sensitive enough to visualize anatomical differences in the capillaries between the two cohorts. Using transfer learning, the model classifies images with an area under the ROC curve of 0.897, and a sensitivity of 0.783 and specificity of 0.895. In conclusion, this study demonstrates the capabilities of RSOM as an imaging tool for SSc and establishes it as a modality that facilitates more in-depth studies into the disease mechanisms and progression.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Videocapillaroscopy
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
2045-2322
e-ISSN
2045-2322
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 10,
Heft: 1,
Seiten: ,
Artikelnummer: 16444
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505500-001
Förderungen
Helmholtz Association of German Research Centers, through the Initiative and Networking Fund, i3
European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme
Versus Arthritis
NIHR Manchester Biomedical Research Centre
University of Manchester
MRC Confidence in Concept
Copyright
Erfassungsdatum
2020-11-12