PuSH - Publikationsserver des Helmholtz Zentrums München

Li, K.* ; Pfaff, F.* ; Hanebeck, U.D.*

Progressive von mises-fisher filtering using isotropic sample sets for nonlinear hyperspherical estimation.

Sensors 21:2991 (2021)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag
In this work, we present a novel scheme for nonlinear hyperspherical estimation using the von Mises-Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for the efficient and informative representation of the underlying distribution in a geometrically adaptive manner. The proposed deterministic sampling approach allows manually configurable sample sizes, considerably enhancing the filtering performance under strong nonlinearity. Furthermore, the progressive paradigm is applied to the fusing of measurements of non-identity models in conjunction with the isotropic sample sets. We evaluate the proposed filtering scheme in a nonlinear spherical tracking scenario based on simulations. Numerical results show the evidently superior performance of the proposed scheme over state-of-the-art von Mises-Fisher filters and the particle filter.
Impact Factor
Scopus SNIP
Altmetric
3.576
1.555
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Sensor Fusion ; Recursive Bayesian Estimation ; Directional Statistics ; Unscented Transform ; Nonlinear Hyperspherical Filtering; Multivariate; Simulation
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 1424-8220
e-ISSN 1424-8220
Zeitschrift Sensors
Quellenangaben Band: 21, Heft: 9, Seiten: , Artikelnummer: 2991 Supplement: ,
Verlag MDPI
Verlagsort St Alban-anlage 66, Ch-4052 Basel, Switzerland
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - KIT (HAI - KIT)
Förderungen Helmholtz AI Cooperation Unit within the scope of the project "Ubiquitous Spatio-Temporal Learning for Future Mobility"(ULearn4Mobility)
Erfassungsdatum 2021-06-30