Haugg, A.* ; Renz, F.M.* ; Nicholson, A.A.* ; Lor, C.* ; Götzendorfer, S.J.* ; Sladky, R.* ; Skouras, S.* ; McDonald, A.* ; Craddock, C.* ; Hellrung, L.* ; Kirschner, M.* ; Herdener, M.* ; Koush, Y.* ; Papoutsi, M.* ; Keynan, J.N.* ; Hendler, T.* ; Cohen Kadosh, K.* ; Zich, C.* ; Kohl, S.H.* ; Hallschmid, M. ; MacInnes, J.* ; Adcock, R.A.* ; Dickerson, K.C.* ; Chen, N.K.* ; Young, K.* ; Bodurka, J.* ; Marxen, M.* ; Yao, S.* ; Becker, B.* ; Auer, T.* ; Schweizer, R.* ; Pamplona, G.* ; Lanius, R.A.* ; Emmert, K.* ; Haller, S.* ; van de Ville, D.* ; Kim, D.Y.* ; Lee, J.H.* ; Marins, T.* ; Megumi, F.* ; Sorger, B.* ; Kamp, T.* ; Liew, S.L.* ; Veit, R. ; Spetter, M.* ; Weiskopf, N.* ; Scharnowski, F.* ; Steyrl, D.*
Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis.
Neuroimage 237:118207 (2021)
Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Functional Mri ; Learning ; Machine Learning ; Mega-analysis ; Neurofeedback ; Real-time Fmri; Resonance-imaging Neurofeedback; Cortex Activity; Self-regulation; Brain Activation; Motor Imagery; Reduction; Feedback; Attention; Efficacy; Memory
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
1053-8119
e-ISSN
1095-9572
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 237,
Heft: ,
Seiten: ,
Artikelnummer: 118207
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
525 B St, Ste 1900, San Diego, Ca 92101-4495 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
90000 - German Center for Diabetes Research
Forschungsfeld(er)
Helmholtz Diabetes Center
PSP-Element(e)
G-502400-001
Förderungen
Deutsche Forschungsgemeinschaft (DFG)
European Union's Horizon 2020 research and innovation program
European Union
Swiss National Science Foundation
Foundation for Research in Science and the Humanities at the University of Zurich
Forschungskredit of the University of Zurich
Copyright
Erfassungsdatum
2021-07-01