Shahzadi, I.* ; Lattermann, A.* ; Zwanenburg, A.* ; Baldus, C.* ; Peeken, J.C. ; Combs, S.E. ; Baumann, M.* ; Löck, S.*
     
 
    
        
Do we need complex image features to personalize treatment of patients with locally advanced rectal cancer?
    
    
        
    
    
        
        In: (24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021, 27 September-01 October 2021, Virtual, Online). Berlin [u.a.]: Springer, 2021. 775-785 (Lect. Notes Comput. Sc. ; 12907 LNCS)
    
    
		
		
		  DOI
 DOI
		
		
		
		
		  
		
		
			Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
     
    
		
		
			
				Radiomics has shown great potential for outcome prognosis and presents a promising approach for improving personalized cancer treatment. In radiomic analyses, features of different complexity are extracted from clinical imaging datasets, which are correlated to the endpoints of interest using machine-learning approaches. However, it is generally unclear if more complex features have a higher prognostic value and show a robust performance in external validation. Therefore, in this study, we developed and validated radiomic signatures for outcome prognosis after neoadjuvant radiochemotherapy in locally advanced rectal cancer (LARC) using computed tomography (CT) and T2-weighted magnetic resonance imaging (MRI) of two independent institutions (training/validation: 94/28 patients). For the prognosis of tumor response and freedom from distant metastases (FFDM), we used different imaging features extracted from the gross tumor volume: less complex morphological and first-order (MFO) features, more complex second-order texture (SOT) features, and both feature classes combined. Analyses were performed for both imaging modalities separately and combined. Performance was assessed by the area under the curve (AUC) and the concordance index (CI) for tumor response and FFDM, respectively. Overall, radiomic features showed prognostic value for both endpoints. Combining MFO and SOT features led to equal or higher performance in external validation compared to MFO and SOT features alone. The best results were observed after combining MRI and CT features (AUC = 0.76, CI = 0.65). In conclusion, promising biomarker signatures combining MRI and CT were developed for outcome prognosis in LARC. Further external validation is pending before potential clinical application.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Konferenzbeitrag
    
 
    
        Dokumenttyp
        
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Biomarkers ; Distant Metastases ; Rectal Cancer ; Tumor Response
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2021
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2021
    
 
    
    
        ISSN (print) / ISBN
        0302-9743
    
 
    
        e-ISSN
        1611-3349
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
    
 
	
        Konferzenzdatum
        27 September-01 October 2021
    
     
	
        Konferenzort
        Virtual, Online
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 12907 LNCS,  
	    Heft: ,  
	    Seiten: 775-785 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Springer
        
 
        
            Verlagsort
            Berlin [u.a.]
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        
    
 
     
    
        POF Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Forschungsfeld(er)
        Radiation Sciences
    
 
    
        PSP-Element(e)
        G-501300-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2021-11-25