Caldi Gomes, L.* ; Galhoz, A. ; Jain, G.* ; Roser, A.E.* ; Maass, F.* ; Carboni, E.* ; Barski, E.* ; Lenz, C.* ; Lohmann, K.* ; Klein, C.* ; Bähr, M.* ; Fischer, A.* ; Menden, M.P. ; Lingor, P.*
Multi-omic landscaping of human midbrains identifies disease-relevant molecular targets and pathways in advanced-stage Parkinson's disease.
Clin. Transl. Med. 12:e692 (2022)
BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder whose prevalence is rapidly increasing worldwide. The molecular mechanisms underpinning the pathophysiology of sporadic PD remain incompletely understood. Therefore, causative therapies are still elusive. To obtain a more integrative view of disease-mediated alterations, we investigated the molecular landscape of PD in human post-mortem midbrains, a region that is highly affected during the disease process. METHODS: Tissue from 19 PD patients and 12 controls were obtained from the Parkinson's UK Brain Bank and subjected to multi-omic analyses: small and total RNA sequencing was performed on an Illumina's HiSeq4000, while proteomics experiments were performed in a hybrid triple quadrupole-time of flight mass spectrometer (TripleTOF5600+) following quantitative sequential window acquisition of all theoretical mass spectra. Differential expression analyses were performed with customized frameworks based on DESeq2 (for RNA sequencing) and with Perseus v.1.5.6.0 (for proteomics). Custom pipelines in R were used for integrative studies. RESULTS: Our analyses revealed multiple deregulated molecular targets linked to known disease mechanisms in PD as well as to novel processes. We have identified and experimentally validated (quantitative real-time polymerase chain reaction/western blotting) several PD-deregulated molecular candidates, including miR-539-3p, miR-376a-5p, miR-218-5p and miR-369-3p, the valid miRNA-mRNA interacting pairs miR-218-5p/RAB6C and miR-369-3p/GTF2H3, as well as multiple proteins, such as CHI3L1, HSPA1B, FNIP2 and TH. Vertical integration of multi-omic analyses allowed validating disease-mediated alterations across different molecular layers. Next to the identification of individual molecular targets in all explored omics layers, functional annotation of differentially expressed molecules showed an enrichment of pathways related to neuroinflammation, mitochondrial dysfunction and defects in synaptic function. CONCLUSIONS: This comprehensive assessment of PD-affected and control human midbrains revealed multiple molecular targets and networks that are relevant to the disease mechanism of advanced PD. The integrative analyses of multiple omics layers underscore the importance of neuroinflammation, immune response activation, mitochondrial and synaptic dysfunction as putative therapeutic targets for advanced PD.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Parkinson Disease ; Data Integration ; Mirnas ; Multi-omics; Alpha-synuclein Expression; Unfolded Protein Response; Heat-shock Proteins; Cerebrospinal-fluid; Cell-cycle; Alzheimers-disease; Polymerase-gamma; Rat-brain; Microrna; Biomarker
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
2001-1326
e-ISSN
2001-1326
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 12,
Heft: 1,
Seiten: ,
Artikelnummer: e692
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
The Atrium, Southern Gate, Chichester Po19 8sq, W Sussex, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-554700-001
Förderungen
Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany (PL).
Bridging Funds from the Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences (LCG);
Copyright
Erfassungsdatum
2022-02-09