PuSH - Publikationsserver des Helmholtz Zentrums München

Linking increased isotope fractionation at low concentrations to enzyme activity regulation: 4-Cl phenol degradation by Arthrobacter chlorophenolicus A6.

Environ. Sci. Technol. 56, 3021-3032 (2022)
Postprint Forschungsdaten DOI PMC
Open Access Green
Slow microbial degradation of organic trace chemicals ("micropollutants") has been attributed to either downregulation of enzymatic turnover or rate-limiting substrate supply at low concentrations. In previous biodegradation studies, a drastic decrease in isotope fractionation of atrazine revealed a transition from rate-limiting enzyme turnover to membrane permeation as a bottleneck when concentrations fell below the Monod constant of microbial growth. With degradation of the pollutant 4-chlorophenol (4-CP) by Arthrobacter chlorophenolicus A6, this study targeted a bacterium which adapts its enzyme activity to concentrations. Unlike with atrazine degradation, isotope fractionation of 4-CP increased at lower concentrations, from ε(C) = -1.0 ± 0.5‰ in chemostats (D = 0.090 h-1, 88 mg L-1) and ε(C) = -2.1 ± 0.5‰ in batch (c0 = 220 mg L-1) to ε(C) = -4.1 ± 0.2‰ in chemostats at 90 μg L-1. Surprisingly, fatty acid composition indicated increased cell wall permeability at high concentrations, while proteomics revealed that catabolic enzymes (CphCI and CphCII) were differentially expressed at D = 0.090 h-1. These observations support regulation on the enzyme activity level─through either a metabolic shift between catabolic pathways or decreased enzymatic turnover at low concentrations─and, hence, reveal an alternative end-member scenario for bacterial adaptation at low concentrations. Including more degrader strains into this multidisciplinary analytical approach offers the perspective to build a knowledge base on bottlenecks of bioremediation at low concentrations that considers bacterial adaptation.
Impact Factor
Scopus SNIP
Altmetric
11.357
2.056
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Cell Wall Permeability ; Chemostat ; Enzyme Regulation ; Isotope Effect ; Limits Of Biodegradation ; Mass Transfer ; Proteomics
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 0013-936X
e-ISSN 1520-5851
Quellenangaben Band: 56, Heft: 5, Seiten: 3021-3032 Artikelnummer: , Supplement: ,
Verlag ACS
Verlagsort Washington, DC
Begutachtungsstatus Peer reviewed
POF Topic(s) 20403 - Sustainable Water Management
30203 - Molecular Targets and Therapies
Forschungsfeld(er) Environmental Sciences
Enabling and Novel Technologies
PSP-Element(e) G-504390-001
G-505700-001
Scopus ID 85125354830
PubMed ID 35148097
Erfassungsdatum 2022-05-05